|
--- |
|
license: |
|
- bsd-3-clause |
|
- apache-2.0 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- pszemraj/scientific_lay_summarisation-plos-norm |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: long-t5-tglobal-xl-16384-book-summary-scientific_lay_summarisation-plos-norm-16384-summ-v1 |
|
results: |
|
- task: |
|
name: Summarization |
|
type: summarization |
|
dataset: |
|
name: pszemraj/scientific_lay_summarisation-plos-norm |
|
type: pszemraj/scientific_lay_summarisation-plos-norm |
|
split: validation |
|
metrics: |
|
- name: Rouge1 |
|
type: rouge |
|
value: 44.3203 |
|
inference: False |
|
--- |
|
|
|
|
|
# long-t5-tglobal-xl-16384-booksci-summary-plos-10k |
|
|
|
This model is a fine-tuned version of [pszemraj/long-t5-tglobal-xl-16384-book-summary](https://huggingface.co/pszemraj/long-t5-tglobal-xl-16384-book-summary) on the pszemraj/scientific_lay_summarisation-plos-norm dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.5041 |
|
- Rouge1: 44.3203 |
|
- Rouge2: 11.0576 |
|
- Rougel: 22.7584 |
|
- Rougelsum: 40.1462 |
|
- Gen Len: 256.66 |
|
|
|
## Model description |
|
|
|
Another test of further fine-tuning booksum-based models, this one fine-tuned on the PLOS subset of lay-summaries for about 10k examples input, to make it roughly equivalent to [this checkpoint](https://huggingface.co/pszemraj/long-t5-tglobal-xl-16384-booksci-summary-v1) fine-tuned on the ELIFE subset for two epochs (also around 10k examples). |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 3e-05 |
|
- train_batch_size: 1 |
|
- eval_batch_size: 1 |
|
- seed: 165 |
|
- gradient_accumulation_steps: 8 |
|
- total_train_batch_size: 8 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: cosine |
|
- lr_scheduler_warmup_ratio: 0.02 |
|
- num_epochs: 1.0 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |
|
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| |
|
| 1.7715 | 0.28 | 350 | 1.5310 | 43.4729 | 10.4616 | 22.1928 | 39.505 | 260.87 | |
|
| 1.9307 | 0.56 | 700 | 1.5102 | 44.1634 | 10.9336 | 22.3896 | 40.2939 | 253.58 | |
|
| 1.2981 | 0.84 | 1050 | 1.5046 | 44.2728 | 10.8455 | 22.4122 | 40.3019 | 261.29 | |
|
|
|
|