|
--- |
|
license: other |
|
tags: |
|
- generated_from_trainer |
|
- stable diffusion |
|
- diffusion |
|
- text2image |
|
- prompt augment |
|
- prompt engineering |
|
datasets: |
|
- Gustavosta/Stable-Diffusion-Prompts |
|
widget: |
|
- text: morning sun over Jakarta |
|
example_title: morning sun |
|
- text: 'WARNING: pip is' |
|
example_title: pip |
|
- text: sentient cheese |
|
example_title: sentient cheese |
|
- text: cheeps are |
|
example_title: cheeps |
|
- text: avocado armchair |
|
example_title: creative prompt |
|
- text: Landscape of |
|
example_title: landscape |
|
parameters: |
|
min_length: 16 |
|
max_length: 96 |
|
no_repeat_ngram_size: 1 |
|
do_sample: true |
|
base_model: facebook/opt-350m |
|
model-index: |
|
- name: opt-350m-magicprompt-SD |
|
results: [] |
|
--- |
|
|
|
|
|
# opt-350m-magicprompt-SD |
|
|
|
Generate/augment your prompt, stable diffusion style. |
|
|
|
This model is a fine-tuned version of [facebook/opt-350m](https://huggingface.co/facebook/opt-350m) on the Gustavosta/Stable-Diffusion-Prompts dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.2987 |
|
- eval_steps_per_second = 16.623 |
|
- perplexity = 3.6644 |
|
|
|
## example |
|
|
|
![jakarta](https://i.imgur.com/TP3HQOA.png) |
|
|
|
output (_on DALL-E 2, but as words are words, works anywhere_) |
|
|
|
![dalle2-jakarta](https://i.ibb.co/BKVxwmJ/DALL-E-2022-11-09-12-37-56-morning-sun-over-Jakarta-by-Simon-St-lenhag-and-Gaston-Bussiere-Matte-pai.png) |
|
|
|
## Training and evaluation data |
|
|
|
refer to the `Gustavosta/Stable-Diffusion-Prompts` dataset. |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0001 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 2 |
|
- seed: 42 |
|
- distributed_type: multi-GPU |
|
- num_devices: 2 |
|
- gradient_accumulation_steps: 32 |
|
- total_train_batch_size: 512 |
|
- total_eval_batch_size: 4 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: cosine |
|
- lr_scheduler_warmup_ratio: 0.05 |
|
- num_epochs: 10.0 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:-----:|:----:|:---------------:| |
|
| 2.8568 | 0.95 | 16 | 2.5937 | |
|
| 2.2487 | 1.95 | 32 | 2.1050 | |
|
| 1.9011 | 2.95 | 48 | 1.8082 | |
|
| 1.6837 | 3.95 | 64 | 1.6178 | |
|
| 1.4887 | 4.95 | 80 | 1.4897 | |
|
| 1.3812 | 5.95 | 96 | 1.4017 | |
|
| 1.2944 | 6.95 | 112 | 1.3437 | |
|
| 1.2574 | 7.95 | 128 | 1.3127 | |
|
| 1.2325 | 8.95 | 144 | 1.3009 | |
|
| 1.2223 | 9.95 | 160 | 1.2987 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.25.0.dev0 |
|
- Pytorch 1.13.0+cu117 |
|
- Datasets 2.6.1 |
|
- Tokenizers 0.13.1 |
|
|