whisper-small-bn-in

This model is a fine-tuned version of openai/whisper-small on the google/fleurs dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1842
  • Wer: 0.4568

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: constant_with_warmup
  • lr_scheduler_warmup_steps: 5
  • training_steps: 2000

Training results

Training Loss Epoch Step Validation Loss Wer
0.4443 0.53 100 0.3399 0.7272
0.249 1.07 200 0.2222 0.6244
0.1662 1.6 300 0.1778 0.5807
0.1221 2.14 400 0.1602 0.5397
0.0965 2.67 500 0.1484 0.5168
0.0646 3.21 600 0.1475 0.4966
0.0566 3.74 700 0.1420 0.4812
0.028 4.28 800 0.1511 0.4910
0.0325 4.81 900 0.1476 0.4766
0.0177 5.35 1000 0.1593 0.4876
0.0176 5.88 1100 0.1589 0.4715
0.0127 6.42 1200 0.1622 0.4634
0.0126 6.95 1300 0.1706 0.4673
0.0089 7.49 1400 0.1777 0.4712
0.0087 8.02 1500 0.1776 0.4666
0.0076 8.56 1600 0.1788 0.4505
0.007 9.09 1700 0.1906 0.4685
0.0057 9.63 1800 0.1840 0.4573
0.0064 10.16 1900 0.1841 0.4569
0.0057 10.7 2000 0.1842 0.4568

Framework versions

  • Transformers 4.32.0.dev0
  • Pytorch 1.12.1+cu116
  • Datasets 2.4.0
  • Tokenizers 0.12.1
Downloads last month
2
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for ptah23/whisper-small-fleurs-bn-in

Finetuned
(2217)
this model

Dataset used to train ptah23/whisper-small-fleurs-bn-in

Evaluation results