These are the QLoRA adapters for training lightblue/Karasu-Mixtral-8x22B-v0.1. There are also 4 checkpoints from training.

Built with Axolotl

See axolotl config

axolotl version: 0.4.0

base_model: mistral-community/Mixtral-8x22B-v0.1
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer
trust_remote_code: true

load_in_8bit: false
load_in_4bit: true
strict: false

datasets:
  - path: lightblue/gpt4_conversations_multilingual
    type: sharegpt
    conversation: mistral
dataset_prepared_path: ./prepared_dataset_2048-multiling
val_set_size: 0
output_dir: ./qlora-out-2048-multiling

## You can optionally freeze the entire model and unfreeze a subset of parameters
unfrozen_parameters:
#  - ^lm_head.weight$
#  - ^model.embed_tokens.weight$[:32000]
#  - model.layers.2[0-9]+.block_sparse_moe.gate
#  - model.layers.2[0-9]+.block_sparse_moe.experts
#  - model.layers.3[0-9]+.block_sparse_moe.gate
#  - model.layers.3[0-9]+.block_sparse_moe.experts

model_config:
  output_router_logits: true

adapter: qlora
lora_model_dir:

sequence_len: 2048
sample_packing: true
pad_to_sequence_len: true

lora_r: 16
lora_alpha: 16
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:
#lora_target_modules:
#  - gate
#  - q_proj
#  - k_proj
#  - v_proj
#  - o_proj
#  - w1
#  - w2
#  - w3

gradient_accumulation_steps: 2
micro_batch_size: 1
num_epochs: 1
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.0002

use_wandb: true
wandb_project: axolotl
wandb_entity: peterd
wandb_name: mixtral_8x22b_test

train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false

gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true

warmup_steps: 10
evals_per_epoch: 0
eval_table_size:
eval_max_new_tokens: 128
saves_per_epoch: 5
debug:
deepspeed: /workspace/axolotl/deepspeed_configs/zero2.json
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:

qlora-out-2048-multiling

This model is a fine-tuned version of mistral-community/Mixtral-8x22B-v0.1 on the None dataset.

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 8
  • total_eval_batch_size: 4
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • num_epochs: 1

Training results

Framework versions

  • PEFT 0.10.0
  • Transformers 4.40.0.dev0
  • Pytorch 2.1.2+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.0
Downloads last month
12
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no pipeline_tag.

Model tree for ptrdvn/Karasu-Mixtral-8x22B-v0.1-lora-adapters

Adapter
(1)
this model