These are the QLoRA adapters for training lightblue/Karasu-Mixtral-8x22B-v0.1. There are also 4 checkpoints from training.
See axolotl config
axolotl version: 0.4.0
base_model: mistral-community/Mixtral-8x22B-v0.1
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer
trust_remote_code: true
load_in_8bit: false
load_in_4bit: true
strict: false
datasets:
- path: lightblue/gpt4_conversations_multilingual
type: sharegpt
conversation: mistral
dataset_prepared_path: ./prepared_dataset_2048-multiling
val_set_size: 0
output_dir: ./qlora-out-2048-multiling
## You can optionally freeze the entire model and unfreeze a subset of parameters
unfrozen_parameters:
# - ^lm_head.weight$
# - ^model.embed_tokens.weight$[:32000]
# - model.layers.2[0-9]+.block_sparse_moe.gate
# - model.layers.2[0-9]+.block_sparse_moe.experts
# - model.layers.3[0-9]+.block_sparse_moe.gate
# - model.layers.3[0-9]+.block_sparse_moe.experts
model_config:
output_router_logits: true
adapter: qlora
lora_model_dir:
sequence_len: 2048
sample_packing: true
pad_to_sequence_len: true
lora_r: 16
lora_alpha: 16
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:
#lora_target_modules:
# - gate
# - q_proj
# - k_proj
# - v_proj
# - o_proj
# - w1
# - w2
# - w3
gradient_accumulation_steps: 2
micro_batch_size: 1
num_epochs: 1
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.0002
use_wandb: true
wandb_project: axolotl
wandb_entity: peterd
wandb_name: mixtral_8x22b_test
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_steps: 10
evals_per_epoch: 0
eval_table_size:
eval_max_new_tokens: 128
saves_per_epoch: 5
debug:
deepspeed: /workspace/axolotl/deepspeed_configs/zero2.json
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
qlora-out-2048-multiling
This model is a fine-tuned version of mistral-community/Mixtral-8x22B-v0.1 on the None dataset.
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- total_eval_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 1
Training results
Framework versions
- PEFT 0.10.0
- Transformers 4.40.0.dev0
- Pytorch 2.1.2+cu121
- Datasets 2.18.0
- Tokenizers 0.15.0
- Downloads last month
- 3
Model tree for ptrdvn/Karasu-Mixtral-8x22B-v0.1-lora-adapters
Base model
mistral-community/Mixtral-8x22B-v0.1