File size: 9,055 Bytes
21f738e
 
 
 
 
 
 
 
b66d419
fa25938
b66d419
 
104c54a
 
b66d419
 
 
fa25938
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
---
license: cc0-1.0
tags:
- computer-vision
- image-generation
- anime
---

# TADNE (This Anime Does Not Exist) model

The original TADNE site is https://thisanimedoesnotexist.ai/.

![](samples/sample.jpg)

## Original TensorFlow model

The original TADNE model is provided in [this site](https://www.gwern.net/Faces#tadne-download) under CC-0 license. ([Google Drive](https://drive.google.com/file/d/1A-E_E32WAtTHRlOzjhhYhyyBDXLJN9_H))

## Model Conversion

The model in the `models` directory is converted with the following repo:
https://github.com/rosinality/stylegan2-pytorch

### Apply patches
```diff
--- a/model.py
+++ b/model.py
@@ -395,6 +395,7 @@ class Generator(nn.Module):
         style_dim,
         n_mlp,
         channel_multiplier=2,
+        additional_multiplier=2,
         blur_kernel=[1, 3, 3, 1],
         lr_mlp=0.01,
     ):
@@ -426,6 +427,9 @@ class Generator(nn.Module):
             512: 32 * channel_multiplier,
             1024: 16 * channel_multiplier,
         }
+        if additional_multiplier > 1:
+            for k in list(self.channels.keys()):
+                self.channels[k] *= additional_multiplier

         self.input = ConstantInput(self.channels[4])
         self.conv1 = StyledConv(
@@ -518,7 +522,7 @@ class Generator(nn.Module):
                     getattr(self.noises, f"noise_{i}") for i in range(self.num_layers)
                 ]

-        if truncation < 1:
+        if truncation_latent is not None:
             style_t = []

             for style in styles:
```

```diff
--- a/convert_weight.py
+++ b/convert_weight.py
@@ -221,6 +221,7 @@ if __name__ == "__main__":
         default=2,
         help="channel multiplier factor. config-f = 2, else = 1",
     )
+    parser.add_argument("--additional_multiplier", type=int, default=2)
     parser.add_argument("path", metavar="PATH", help="path to the tensorflow weights")

     args = parser.parse_args()
@@ -243,7 +244,8 @@ if __name__ == "__main__":
         if layer[0].startswith('Dense'):
             n_mlp += 1

-    g = Generator(size, 512, n_mlp, channel_multiplier=args.channel_multiplier)
+    style_dim = 512 * args.additional_multiplier
+    g = Generator(size, style_dim, n_mlp, channel_multiplier=args.channel_multiplier, additional_multiplier=args.additional_multiplier)
     state_dict = g.state_dict()
     state_dict = fill_statedict(state_dict, g_ema.vars, size, n_mlp)

@@ -254,7 +256,7 @@ if __name__ == "__main__":
     ckpt = {"g_ema": state_dict, "latent_avg": latent_avg}

     if args.gen:
-        g_train = Generator(size, 512, n_mlp, channel_multiplier=args.channel_multiplier)
+        g_train = Generator(size, style_dim, n_mlp, channel_multiplier=args.channel_multiplier, additional_multiplier=args.additional_multiplier)
         g_train_state = g_train.state_dict()
         g_train_state = fill_statedict(g_train_state, generator.vars, size, n_mlp)
         ckpt["g"] = g_train_state
@@ -271,9 +273,12 @@ if __name__ == "__main__":
     batch_size = {256: 16, 512: 9, 1024: 4}
     n_sample = batch_size.get(size, 25)

+    if args.additional_multiplier > 1:
+        n_sample = 2
+
     g = g.to(device)

-    z = np.random.RandomState(0).randn(n_sample, 512).astype("float32")
+    z = np.random.RandomState(0).randn(n_sample, style_dim).astype("float32")

     with torch.no_grad():
         img_pt, _ = g(
```

### Build Docker image

```dockerfile
FROM nvidia/cuda:10.0-cudnn7-devel-ubuntu18.04

ENV DEBIAN_FRONTEND=noninteractive
RUN apt-get update -y && \
    apt-get install -y --no-install-recommends \
    git \
    ninja-build \
    # pyenv dependencies \
    make \
    build-essential \
    libssl-dev \
    zlib1g-dev \
    libbz2-dev \
    libreadline-dev \
    libsqlite3-dev \
    wget \
    curl \
    llvm \
    libncursesw5-dev \
    xz-utils \
    tk-dev \
    libxml2-dev \
    libxmlsec1-dev \
    libffi-dev \
    liblzma-dev && \
    apt-get clean && \
    rm -rf /var/lib/apt/lists/*

ARG PYTHON_VERSION=3.7.12
ENV PYENV_ROOT /opt/pyenv
ENV PATH ${PYENV_ROOT}/shims:${PYENV_ROOT}/bin:${PATH}
RUN curl https://pyenv.run | bash
RUN pyenv install ${PYTHON_VERSION} && \
    pyenv global ${PYTHON_VERSION}
RUN pip install --no-cache-dir -U requests tqdm opencv-python-headless
RUN pip install --no-cache-dir -U tensorflow-gpu==1.15.4
RUN pip install --no-cache-dir -U torch==1.10.2+cu102 torchvision==0.11.3+cu102 -f https://download.pytorch.org/whl/torch/ -f https://download.pytorch.org/whl/torchvision/
RUN rm -rf ${HOME}/.cache/pip

WORKDIR /work
ENV PYTHONPATH /work/:${PYTHONPATH}
```

```bash
docker build . -t stylegan2_pytorch
```

### Convert
```bash
git clone https://github.com/NVLabs/stylegan2
docker run --rm -it -u $(id -u):$(id -g) -e XDG_CACHE_HOME=/work --ipc host --gpus all -w /work -v `pwd`:/work stylegan2_pytorch python convert_weight.py --repo stylegan2 aydao-anime-danbooru2019s-512-5268480.pkl
```

## Usage
### Apply patch
```diff
--- a/generate.py
+++ b/generate.py
@@ -6,21 +6,25 @@ from model import Generator
 from tqdm import tqdm


-def generate(args, g_ema, device, mean_latent):
+def generate(args, g_ema, device, mean_latent, randomize_noise):

     with torch.no_grad():
         g_ema.eval()
         for i in tqdm(range(args.pics)):
-            sample_z = torch.randn(args.sample, args.latent, device=device)
+            samples = []
+            for _ in range(args.split):
+                sample_z = torch.randn(args.sample // args.split, args.latent, device=device)

-            sample, _ = g_ema(
-                [sample_z], truncation=args.truncation, truncation_latent=mean_latent
-            )
+                sample, _ = g_ema(
+                        [sample_z], truncation=args.truncation, truncation_latent=mean_latent,
+                    randomize_noise=randomize_noise
+                )
+                samples.extend(sample)

             utils.save_image(
-                sample,
-                f"sample/{str(i).zfill(6)}.png",
-                nrow=1,
+                samples,
+                f"{args.output_dir}/{str(i).zfill(6)}.{args.ext}",
+                nrow=args.ncol,
                 normalize=True,
                 range=(-1, 1),
             )
@@ -30,6 +34,8 @@ if __name__ == "__main__":
     device = "cuda"

     parser = argparse.ArgumentParser(description="Generate samples from the generator")
+    parser.add_argument("--seed", type=int, default=0)
+    parser.add_argument("--output-dir", '-o', type=str, required=True)

     parser.add_argument(
         "--size", type=int, default=1024, help="output image size of the generator"
@@ -37,11 +43,14 @@ if __name__ == "__main__":
     parser.add_argument(
         "--sample",
         type=int,
-        default=1,
+        default=100,
         help="number of samples to be generated for each image",
     )
+    parser.add_argument("--ncol", type=int, default=10)
+    parser.add_argument("--split", type=int, default=4)
+    parser.add_argument("--ext", type=str, default='png')
     parser.add_argument(
-        "--pics", type=int, default=20, help="number of images to be generated"
+        "--pics", type=int, default=1, help="number of images to be generated"
     )
     parser.add_argument("--truncation", type=float, default=1, help="truncation ratio")
     parser.add_argument(
@@ -62,23 +71,31 @@ if __name__ == "__main__":
         default=2,
         help="channel multiplier of the generator. config-f = 2, else = 1",
     )
+    parser.add_argument("--additional_multiplier", type=int, default=1)
+    parser.add_argument("--load_latent_vec", action='store_true')
+    parser.add_argument("--no-randomize-noise", dest='randomize_noise', action='store_false')
+    parser.add_argument("--n_mlp", type=int, default=8)

     args = parser.parse_args()

-    args.latent = 512
-    args.n_mlp = 8
+    seed = args.seed
+    torch.manual_seed(seed)
+    torch.cuda.manual_seed_all(seed)
+
+    args.latent = 512 * args.additional_multiplier

     g_ema = Generator(
-        args.size, args.latent, args.n_mlp, channel_multiplier=args.channel_multiplier
+        args.size, args.latent, args.n_mlp, channel_multiplier=args.channel_multiplier,
+        additional_multiplier=args.additional_multiplier
     ).to(device)
     checkpoint = torch.load(args.ckpt)

-    g_ema.load_state_dict(checkpoint["g_ema"])
+    g_ema.load_state_dict(checkpoint["g_ema"], strict=True)

-    if args.truncation < 1:
+    if not args.load_latent_vec:
         with torch.no_grad():
             mean_latent = g_ema.mean_latent(args.truncation_mean)
     else:
-        mean_latent = None
+        mean_latent = checkpoint['latent_avg'].to(device)

-    generate(args, g_ema, device, mean_latent)
+    generate(args, g_ema, device, mean_latent, randomize_noise=args.randomize_noise)
```

### Run
```bash
python generate.py --ckpt aydao-anime-danbooru2019s-512-5268480.pt --size 512 --n_mlp 4 --additional_multiplier 2 --load_latent_vec --no-randomize-noise -o out_images --truncation 0.6 --seed 333 --pics 1 --sample 48 --ncol 8 --ext jpg
```