metadata
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- conll2003
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: dark-bert-finetuned-ner
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: conll2003
type: conll2003
config: conll2003
split: train
args: conll2003
metrics:
- name: Precision
type: precision
value: 0.928300642821823
- name: Recall
type: recall
value: 0.9478290138000673
- name: F1
type: f1
value: 0.9379631942709634
- name: Accuracy
type: accuracy
value: 0.9859009831047272
dark-bert-finetuned-ner
This model is a fine-tuned version of bert-base-cased on the conll2003 dataset. It achieves the following results on the evaluation set:
- Loss: 0.0639
- Precision: 0.9283
- Recall: 0.9478
- F1: 0.9380
- Accuracy: 0.9859
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
0.0881 | 1.0 | 1756 | 0.0716 | 0.9172 | 0.9322 | 0.9246 | 0.9817 |
0.0375 | 2.0 | 3512 | 0.0610 | 0.9275 | 0.9455 | 0.9364 | 0.9857 |
0.0207 | 3.0 | 5268 | 0.0639 | 0.9283 | 0.9478 | 0.9380 | 0.9859 |
Framework versions
- Transformers 4.22.1
- Pytorch 1.10.0
- Datasets 2.5.1
- Tokenizers 0.12.1