lip_service_4chan / README.md
qgyd2021's picture
Update README.md
ebe71c5
|
raw
history blame
7.49 kB
metadata
base_model: uer/gpt2-chinese-cluecorpussmall
tags:
  - generated_from_trainer
datasets:
  - lip_service4chan
model-index:
  - name: lib_service_4chan
    results: []
language:
  - zh
pipeline_tag: conversational

lib_service_4chan

This model is a fine-tuned version of uer/gpt2-chinese-cluecorpussmall on the lip_service4chan dataset.

Lip Service 满嘴芬芳,吵架陪练员。

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 4
  • eval_batch_size: 8
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 2
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • total_eval_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1000
  • num_epochs: 1.0

Training results

Training Loss Epoch Step Validation Loss
2.716 0.01 100 1.9495
1.8985 0.02 200 1.6915
1.7151 0.02 300 1.5763
1.6217 0.03 400 1.5115
1.564 0.04 500 1.4694
1.5461 0.05 600 1.4379
1.4943 0.06 700 1.4127
1.4737 0.07 800 1.3890
1.4399 0.07 900 1.3813
1.4356 0.08 1000 1.3540
1.3999 0.09 1100 1.3329
1.3668 0.1 1200 1.3153
1.3604 0.11 1300 1.3029
1.3352 0.12 1400 1.2834
1.3278 0.12 1500 1.2619
1.315 0.13 1600 1.2539
1.2854 0.14 1700 1.2432
1.292 0.15 1800 1.2288
1.2795 0.16 1900 1.2188
1.2677 0.16 2000 1.2059
1.2599 0.17 2100 1.2019
1.2479 0.18 2200 1.1915
1.2245 0.19 2300 1.1827
1.2326 0.2 2400 1.1734
1.2124 0.21 2500 1.1660
1.2171 0.21 2600 1.1576
1.1917 0.22 2700 1.1518
1.1867 0.23 2800 1.1444
1.1821 0.24 2900 1.1386
1.1741 0.25 3000 1.1347
1.1753 0.25 3100 1.1293
1.1629 0.26 3200 1.1264
1.1694 0.27 3300 1.1201
1.1482 0.28 3400 1.1146
1.156 0.29 3500 1.1052
1.1512 0.3 3600 1.0982
1.142 0.3 3700 1.0971
1.1544 0.31 3800 1.0920
1.1312 0.32 3900 1.0869
1.1394 0.33 4000 1.0808
1.123 0.34 4100 1.0747
1.1154 0.35 4200 1.0715
1.1064 0.35 4300 1.0674
1.1245 0.36 4400 1.0620
1.1036 0.37 4500 1.0575
1.0963 0.38 4600 1.0568
1.0987 0.39 4700 1.0491
1.0859 0.39 4800 1.0443
1.0845 0.4 4900 1.0432
1.0938 0.41 5000 1.0410
1.087 0.42 5100 1.0334
1.077 0.43 5200 1.0324
1.0787 0.44 5300 1.0276
1.068 0.44 5400 1.0220
1.0748 0.45 5500 1.0199
1.0622 0.46 5600 1.0169
1.0555 0.47 5700 1.0153
1.0498 0.48 5800 1.0100
1.055 0.49 5900 1.0074
1.0424 0.49 6000 1.0020
1.0465 0.5 6100 0.9976
1.0414 0.51 6200 0.9942
1.0355 0.52 6300 0.9919
1.0234 0.53 6400 0.9883
1.0205 0.53 6500 0.9857
1.0316 0.54 6600 0.9805
1.0137 0.55 6700 0.9788
1.0222 0.56 6800 0.9773
1.0219 0.57 6900 0.9722
1.0032 0.58 7000 0.9706
1.0039 0.58 7100 0.9669
1.0166 0.59 7200 0.9635
1.0065 0.6 7300 0.9614
1.0087 0.61 7400 0.9574
0.9968 0.62 7500 0.9525
1.0031 0.62 7600 0.9503
0.99 0.63 7700 0.9491
0.9946 0.64 7800 0.9457
0.9944 0.65 7900 0.9424
0.9854 0.66 8000 0.9399
0.9797 0.67 8100 0.9364
0.9804 0.67 8200 0.9341
0.9835 0.68 8300 0.9318
0.9849 0.69 8400 0.9299
0.9753 0.7 8500 0.9274
0.975 0.71 8600 0.9238
0.9649 0.72 8700 0.9225
0.9654 0.72 8800 0.9202
0.958 0.73 8900 0.9167
0.9679 0.74 9000 0.9143
0.9631 0.75 9100 0.9110
0.9633 0.76 9200 0.9086
0.9495 0.76 9300 0.9071
0.9625 0.77 9400 0.9036
0.9519 0.78 9500 0.9023
0.9399 0.79 9600 0.8993
0.9624 0.8 9700 0.8973
0.9418 0.81 9800 0.8963
0.9394 0.81 9900 0.8933
0.947 0.82 10000 0.8919
0.9326 0.83 10100 0.8900
0.9326 0.84 10200 0.8886
0.9343 0.85 10300 0.8860
0.9263 0.85 10400 0.8841
0.9256 0.86 10500 0.8818
0.9373 0.87 10600 0.8807
0.9314 0.88 10700 0.8789
0.9203 0.89 10800 0.8770
0.927 0.9 10900 0.8754
0.934 0.9 11000 0.8744
0.9193 0.91 11100 0.8727
0.9185 0.92 11200 0.8714
0.9188 0.93 11300 0.8702
0.9165 0.94 11400 0.8693
0.9209 0.95 11500 0.8682
0.9241 0.95 11600 0.8670
0.9182 0.96 11700 0.8662
0.9076 0.97 11800 0.8653
0.9225 0.98 11900 0.8643
0.9094 0.99 12000 0.8640
0.913 0.99 12100 0.8635

Framework versions

  • Transformers 4.33.0
  • Pytorch 2.0.0
  • Datasets 2.1.0
  • Tokenizers 0.13.3