|
--- |
|
license: apache-2.0 |
|
datasets: |
|
- liuhaotian/LLaVA-CC3M-Pretrain-595K |
|
- liuhaotian/LLaVA-Instruct-150K |
|
- FreedomIntelligence/ALLaVA-4V-Chinese |
|
- shareAI/ShareGPT-Chinese-English-90k |
|
language: |
|
- zh |
|
- en |
|
pipeline_tag: visual-question-answering |
|
--- |
|
<br> |
|
<br> |
|
|
|
# Model Card for 360VL |
|
<p align="center"> |
|
<img src="https://github.com/360CVGroup/360VL/blob/master/qh360_vl/360vl.PNG?raw=true" width=100%/> |
|
</p> |
|
|
|
**360VL** is developed based on the LLama3 language model and is also the industry's first open source large multi-modal model based on **LLama3-70B**[[🤗Meta-Llama-3-70B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-70B-Instruct)]. In addition to applying the Llama3 language model, the 360VL model also designs a globally aware multi-branch projector architecture, which enables the model to have more sufficient image understanding capabilities. |
|
|
|
**Github**:https://github.com/360CVGroup/360VL |
|
## Model Zoo |
|
|
|
360VL has released the following versions. |
|
|
|
Model | Download |
|
|---|--- |
|
360VL-8B | [🤗 Hugging Face](https://huggingface.co/qihoo360/360VL-8B) |
|
360VL-70B | [🤗 Hugging Face](https://huggingface.co/qihoo360/360VL-70B) |
|
## Features |
|
|
|
360VL offers the following features: |
|
|
|
- Multi-round text-image conversations: 360VL can take both text and images as inputs and produce text outputs. Currently, it supports multi-round visual question answering with one image. |
|
|
|
- Bilingual text support: 360VL supports conversations in both English and Chinese, including text recognition in images. |
|
|
|
- Strong image comprehension: 360VL is adept at analyzing visuals, making it an efficient tool for tasks like extracting, organizing, and summarizing information from images. |
|
|
|
- Fine-grained image resolution: 360VL supports image understanding at a higher resolution of 672×672. |
|
|
|
## Performance |
|
| Model | Checkpoints | MMB<sub>T | MMB<sub>D|MMB-CN<sub>T | MMB-CN<sub>D|MMMU<sub>V|MMMU<sub>T| MME | |
|
|:--------------------|:------------:|:----:|:------:|:------:|:-------:|:-------:|:-------:|:-------:| |
|
| QWen-VL-Chat | [🤗LINK](https://huggingface.co/Qwen/Qwen-VL-Chat) | 61.8 | 60.6 | 56.3 | 56.7 |37| 32.9 | 1860 | |
|
| mPLUG-Owl2 | [🤖LINK](https://www.modelscope.cn/models/iic/mPLUG-Owl2/summary) | 66.0 | 66.5 | 60.3 | 59.5 |34.7| 32.1 | 1786.4 | |
|
| CogVLM | [🤗LINK](https://huggingface.co/THUDM/cogvlm-grounding-generalist-hf) | 65.8| 63.7 | 55.9 | 53.8 |37.3| 30.1 | 1736.6| |
|
| Monkey-Chat | [🤗LINK](https://huggingface.co/echo840/Monkey-Chat) | 72.4| 71 | 67.5 | 65.8 |40.7| - | 1887.4| |
|
| MM1-7B-Chat | [LINK](https://ar5iv.labs.arxiv.org/html/2403.09611) | -| 72.3 | - | - |37.0| 35.6 | 1858.2| |
|
| IDEFICS2-8B | [🤗LINK](https://huggingface.co/HuggingFaceM4/idefics2-8b) | 75.7 | 75.3 | 68.6 | 67.3 |43.0| 37.7 |1847.6| |
|
| Honeybee | [LINK](https://github.com/kakaobrain/honeybee) | 74.3 | 74.3 | - | - |36.2| -|1950| |
|
| SVIT-v1.5-13B| [🤗LINK](https://huggingface.co/Isaachhe/svit-v1.5-13b-full) | 69.1 | - | 63.1 | - | 38.0| 33.3|1889| |
|
| LLaVA-v1.5-13B | [🤗LINK](https://huggingface.co/liuhaotian/llava-v1.5-13b) | 69.2 | 69.2 | 65 | 63.6 |36.4| 33.6 | 1826.7| |
|
| LLaVA-v1.6-13B | [🤗LINK](https://huggingface.co/liuhaotian/llava-v1.6-vicuna-13b) | 70 | 70.7 | 68.5 | 64.3 |36.2| - |1901| |
|
| YI-VL-34B | [🤗LINK](https://huggingface.co/01-ai/Yi-VL-34B) | 72.4 | 71.1 | 70.7 | 71.4 |45.1| 41.6 |2050.2| |
|
| **360VL-8B** | [🤗LINK](https://huggingface.co/qihoo360/360VL-8B) | 75.3 | 73.7 | 71.1 | 68.6 |39.7| 37.1 | 1899.1| |
|
| **360VL-70B** | [🤗LINK](https://huggingface.co/qihoo360/360VL-70B) | 78.1 | 80.4 | 76.9 | 77.7 |50.8| 44.3 | 1983.2| |
|
## Quick Start 🤗 |
|
|
|
```Shell |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
import torch |
|
from PIL import Image |
|
|
|
checkpoint = "qihoo360/360VL-70B" |
|
|
|
model = AutoModelForCausalLM.from_pretrained(checkpoint, torch_dtype=torch.float16, device_map='cuda', trust_remote_code=True).eval() |
|
tokenizer = AutoTokenizer.from_pretrained(checkpoint, trust_remote_code=True) |
|
vision_tower = model.get_vision_tower() |
|
vision_tower.load_model() |
|
vision_tower.to(device="cuda", dtype=torch.float16) |
|
image_processor = vision_tower.image_processor |
|
tokenizer.pad_token = tokenizer.eos_token |
|
|
|
|
|
image = Image.open("docs/008.jpg").convert('RGB') |
|
query = "Who is this cartoon character?" |
|
terminators = [ |
|
tokenizer.convert_tokens_to_ids("<|eot_id|>",) |
|
] |
|
|
|
inputs = model.build_conversation_input_ids(tokenizer, query=query, image=image, image_processor=image_processor) |
|
|
|
input_ids = inputs["input_ids"].to(device='cuda', non_blocking=True) |
|
images = inputs["image"].to(dtype=torch.float16, device='cuda', non_blocking=True) |
|
|
|
output_ids = model.generate( |
|
input_ids, |
|
images=images, |
|
do_sample=False, |
|
eos_token_id=terminators, |
|
num_beams=1, |
|
max_new_tokens=512, |
|
use_cache=True) |
|
|
|
input_token_len = input_ids.shape[1] |
|
outputs = tokenizer.batch_decode(output_ids[:, input_token_len:], skip_special_tokens=True)[0] |
|
outputs = outputs.strip() |
|
print(outputs) |
|
``` |
|
|
|
**Model type:** |
|
360VL-70B is an open-source chatbot trained by fine-tuning LLM on multimodal instruction-following data. |
|
It is an auto-regressive language model, based on the transformer architecture. |
|
Base LLM: [meta-llama/Meta-Llama-3-70B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-70B-Instruct) |
|
|
|
**Model date:** |
|
360VL-70B was trained in May 2024. |
|
|
|
|
|
|
|
## License |
|
This project utilizes certain datasets and checkpoints that are subject to their respective original licenses. Users must comply with all terms and conditions of these original licenses. |
|
The content of this project itself is licensed under the Apache license 2.0 |
|
|
|
**Where to send questions or comments about the model:** |
|
https://github.com/360CVGroup/360VL |
|
|
|
## Related Projects |
|
This work wouldn't be possible without the incredible open-source code of these projects. Huge thanks! |
|
- [Meta Llama 3](https://github.com/meta-llama/llama3) |
|
- [LLaVA: Large Language and Vision Assistant](https://github.com/haotian-liu/LLaVA) |
|
- [Honeybee: Locality-enhanced Projector for Multimodal LLM](https://github.com/kakaobrain/honeybee) |
|
|