metadata
base_model: BAAI/bge-reranker-v2-m3
language:
- en
- ru
license: mit
pipeline_tag: text-classification
tags:
- transformers
- sentence-transformers
- text-embeddings-inference
Model for English and Russian
This is a truncated version of BAAI/bge-reranker-v2-m3.
This model has only English and Russian tokens left in the vocabulary. Thus making it 1.5 smaller than the original model while producing the same embeddings.
The model has been truncated in this notebook.
FAQ
Generate Scores for text
import torch
from transformers import AutoModelForSequenceClassification, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('qilowoq/bge-reranker-v2-m3-en-ru')
model = AutoModelForSequenceClassification.from_pretrained('qilowoq/bge-reranker-v2-m3-en-ru')
model.eval()
pairs = [('How many people live in Berlin?', 'Berlin has a population of 3,520,031 registered inhabitants in an area of 891.82 square kilometers.'),
('Какая площадь Берлина?', 'Площадь Берлина составляет 891,8 квадратных километров.')]
with torch.no_grad():
inputs = tokenizer(pairs, padding=True, truncation=True, return_tensors='pt')
scores = model(**inputs, return_dict=True).logits.view(-1, ).float()
print(scores)
Citation
If you find this repository useful, please consider giving a star and citation
@misc{li2023making,
title={Making Large Language Models A Better Foundation For Dense Retrieval},
author={Chaofan Li and Zheng Liu and Shitao Xiao and Yingxia Shao},
year={2023},
eprint={2312.15503},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
@misc{chen2024bge,
title={BGE M3-Embedding: Multi-Lingual, Multi-Functionality, Multi-Granularity Text Embeddings Through Self-Knowledge Distillation},
author={Jianlv Chen and Shitao Xiao and Peitian Zhang and Kun Luo and Defu Lian and Zheng Liu},
year={2024},
eprint={2402.03216},
archivePrefix={arXiv},
primaryClass={cs.CL}
}