Facilitating Pornographic Text Detection for Open-Domain Dialogue Systems via Knowledge Distillation of Large Language Models
๐ Paper โข ๐ค Model โข โ๏ธ GitHub
Overview
CensorChat is a dialogue monitoring dataset aimed at pornographic text detection within a human-machine dialogue.
Usage
NOTICE: You can directly use our trained checkpoint on the hub of Hugging Face.
For context-level detection, the input format should be [user] {user utterance} [SEP] [chatbot] {chatbot response}
, where user utterance and chatbot response should be placed corresponding content.
- Download the checkpoint
git lfs install
git clone https://huggingface.co/qiuhuachuan/NSFW-detector
- Modify the
text
parameter in local_use.py and execute it.
from typing import Optional
import torch
from transformers import BertConfig, BertTokenizer, BertModel, BertPreTrainedModel
from torch import nn
label_mapping = {0: 'porn', 1: 'normal'}
config = BertConfig.from_pretrained('./NSFW-detector',
num_labels=2,
finetuning_task='text classification')
tokenizer = BertTokenizer.from_pretrained('./NSFW-detector',
use_fast=False,
never_split=['[user]', '[chatbot]'])
tokenizer.vocab['[user]'] = tokenizer.vocab.pop('[unused1]')
tokenizer.vocab['[chatbot]'] = tokenizer.vocab.pop('[unused2]')
class BertForSequenceClassification(BertPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.config = config
self.bert = BertModel.from_pretrained('./NSFW-detector')
classifier_dropout = (config.classifier_dropout
if config.classifier_dropout is not None else
config.hidden_dropout_prob)
self.dropout = nn.Dropout(classifier_dropout)
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
# Initialize weights and apply final processing
self.post_init()
def forward(self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None):
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.bert(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
# we use cls embedding
cls = outputs[0][:, 0, :]
cls = self.dropout(cls)
logits = self.classifier(cls)
return logits
model = BertForSequenceClassification(config=config)
model.load_state_dict(torch.load('./NSFW-detector/pytorch_model.bin'))
model.cuda()
model.eval()
# The following object contains two types of input:
# a single utterance and a single-turn dialogue
to_predict_items = [{
'text':
'''Give some movie recommendations to get women in the mood for sex'''
}, {
'text': 'I break through walls to find more trials'
}, {
'history': {
'user':
'Give some movie recommendations to get women in the mood for sex',
'chatbot':
'''I apologize, but I cannot assist in creating or providing information related to NSFW content or any tools for such purposes. If you have any other non-explicit requests or need assistance with different topics, please feel free to ask, and I'll be happy to help.'''
}
}, {
'history': {
'user':
'Give some movie recommendations to get women in the mood for sex',
'chatbot': '''Sure.'''
}
}]
for item in to_predict_items:
if 'history' in item:
text = '[user] ' + item['history'][
'user'] + ' [SEP] ' + '[chatbot] ' + item['history']['chatbot']
else:
text = item['text']
result = tokenizer.encode_plus(text=text,
padding='max_length',
max_length=512,
truncation=True,
add_special_tokens=True,
return_token_type_ids=True,
return_tensors='pt')
result = result.to('cuda')
with torch.no_grad():
logits = model(**result)
predictions = logits.argmax(dim=-1)
pred_label_idx = predictions.item()
pred_label = label_mapping[pred_label_idx]
print('text:', text)
print('predicted label is:', pred_label)
Citation
If our work is useful for your own, you can cite us with the following BibTex entry:
@misc{qiu2024facilitating,
title={Facilitating Pornographic Text Detection for Open-Domain Dialogue Systems via Knowledge Distillation of Large Language Models},
author={Huachuan Qiu and Shuai Zhang and Hongliang He and Anqi Li and Zhenzhong Lan},
year={2024},
eprint={2403.13250},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 46
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.