whisper-small-nl / README.md
qmeeus's picture
Librarian Bot: Add base_model information to model (#1)
ead3816
|
raw
history blame
2.65 kB
metadata
license: apache-2.0
tags:
  - generated_from_trainer
  - dutch
  - whisper-event
metrics:
  - wer
base_model: qmeeus/whisper-small-nl
model-index:
  - name: whisper-small-nl
    results: []

whisper-small-nl

This model is a fine-tuned version of qmeeus/whisper-small-nl on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3034
  • Wer: 14.5354

Model description

More information needed

Intended uses & limitations

Transcribe files in Dutch:

import soundfile as sf
from transformers import pipeline

whisper_asr = pipeline("automatic-speech-recognition", model="qmeeus/whisper-small-nl", device=0)
whisper_asr.model.config.forced_decoder_ids = whisper_asr.tokenizer.get_decoder_prompt_ids(
    task="transcribe", language="nl"
)

waveform, sr = sf.read(filename)

def iter_chunks(waveform, sampling_rate=16_000, chunk_length=30.):
    assert sampling_rate == 16_000
    n_frames = math.floor(sampling_rate * chunk_length)
    for start in range(0, len(waveform), n_frames):
        end = min(len(waveform), start + n_frames)
        yield waveform[start:end]

for sentence in whisper_asr(iter_chunks(waveform, sr), max_new_tokens=448):
    print(sentence["text"])

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 16
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 10000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.2045 2.49 1000 0.3194 16.1628
0.0652 4.97 2000 0.3425 16.3672
0.0167 7.46 3000 0.3915 15.8187
0.0064 9.95 4000 0.4190 15.7298
0.1966 2.02 5000 0.3298 15.0881
0.1912 4.04 6000 0.3266 14.8764
0.1008 7.02 7000 0.3261 14.8086
0.0899 9.04 8000 0.3196 14.6487
0.1126 12.02 9000 0.3283 14.5894
0.1071 14.04 10000 0.3034 14.5354

Framework versions

  • Transformers 4.26.0.dev0
  • Pytorch 1.13.0+cu117
  • Datasets 2.7.1.dev0
  • Tokenizers 0.13.2