|
--- |
|
license: apache-2.0 |
|
--- |
|
|
|
## Model Description |
|
|
|
Master is a collection of LLMs trained using human-collected seed questions and regenerate the answers with a mixture of high performance Open-source LLMs. |
|
|
|
**Master-Yi-9B** is trained using the ORPO technique. The model shows strong abilities in reasoning on coding and math questions. |
|
|
|
**Quantized Version**: [Here](https://huggingface.co/qnguyen3/Master-Yi-9B-GGUF) |
|
|
|
**Communitiy Quantization** (Thanks to [@LoneStriker](https://huggingface.co/LoneStriker)) |
|
- exl2: [Master-Yi-9B-8.0bpw-h8-exl2](https://huggingface.co/LoneStriker/Master-Yi-9B-8.0bpw-h8-exl2), [Master-Yi-9B-6.0bpw-h6-exl2](https://huggingface.co/LoneStriker/Master-Yi-9B-6.0bpw-h6-exl2), [Master-Yi-9B-5.0bpw-h6-exl2](https://huggingface.co/LoneStriker/Master-Yi-9B-5.0bpw-h6-exl2), [Master-Yi-9B-4.0bpw-h6-exl2](https://huggingface.co/LoneStriker/Master-Yi-9B-4.0bpw-h6-exl2) |
|
- GGUFs: [Master-Yi-9B-GGUF](https://huggingface.co/LoneStriker/Master-Yi-9B-GGUF) |
|
|
|
**Master-Yi-9B-Vision**: **Coming Soon** |
|
|
|
|
|
![img](https://huggingface.co/qnguyen3/Master-Yi-9B/resolve/main/Master-Yi-9B.webp) |
|
|
|
## Prompt Template |
|
|
|
``` |
|
<|im_start|>system |
|
You are a helpful AI assistant.<|im_end|> |
|
<|im_start|>user |
|
What is the meaning of life?<|im_end|> |
|
<|im_start|>assistant |
|
``` |
|
|
|
## Examples |
|
|
|
![image/png](https://cdn-uploads.huggingface.co/production/uploads/630430583926de1f7ec62c6b/E27JmdRAMrHQacM50-lBk.png) |
|
|
|
![image/png](https://cdn-uploads.huggingface.co/production/uploads/630430583926de1f7ec62c6b/z0HS4bxHFQzPe0gZlvCzZ.png) |
|
|
|
## Inference Code |
|
|
|
```python |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
import torch |
|
device = "cuda" # the device to load the model onto |
|
|
|
model = AutoModelForCausalLM.from_pretrained( |
|
"qnguyen3/Master-Yi-9B", |
|
torch_dtype='auto', |
|
device_map="auto" |
|
) |
|
tokenizer = AutoTokenizer.from_pretrained("qnguyen3/Master-Yi-9B") |
|
|
|
prompt = "What is the mearning of life?" |
|
messages = [ |
|
{"role": "system", "content": "You are a helpful AI assistant."}, |
|
{"role": "user", "content": prompt} |
|
] |
|
text = tokenizer.apply_chat_template( |
|
messages, |
|
tokenize=False, |
|
add_generation_prompt=True |
|
) |
|
model_inputs = tokenizer([text], return_tensors="pt").to(device) |
|
|
|
generated_ids = model.generate( |
|
model_inputs.input_ids, |
|
max_new_tokens=1024, |
|
eos_token_id=tokenizer.eos_token_id, |
|
temperature=0.25, |
|
) |
|
generated_ids = [ |
|
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) |
|
] |
|
|
|
response = tokenizer.batch_decode(generated_ids)[0] |
|
print(response) |
|
``` |
|
|
|
## Benchmarks |
|
|
|
### Nous Benchmark: |
|
|
|
| Model |AGIEval|GPT4All|TruthfulQA|Bigbench|Average| |
|
|---------------------------------------------------|------:|------:|---------:|-------:|------:| |
|
|[Master-Yi-9B](https://huggingface.co/qnguyen3/Master-Yi-9B)| 43.55| 71.48| 48.54| 41.43| 51.25| |
|
|
|
|
|
### AGIEval |
|
``` |
|
| Task |Version| Metric |Value| |Stderr| |
|
|------------------------------|------:|--------|----:|---|-----:| |
|
|agieval_aqua_rat | 0|acc |35.83|± | 3.01| |
|
| | |acc_norm|31.89|± | 2.93| |
|
|agieval_logiqa_en | 0|acc |38.25|± | 1.91| |
|
| | |acc_norm|37.79|± | 1.90| |
|
|agieval_lsat_ar | 0|acc |23.04|± | 2.78| |
|
| | |acc_norm|20.43|± | 2.66| |
|
|agieval_lsat_lr | 0|acc |48.04|± | 2.21| |
|
| | |acc_norm|42.75|± | 2.19| |
|
|agieval_lsat_rc | 0|acc |61.34|± | 2.97| |
|
| | |acc_norm|52.79|± | 3.05| |
|
|agieval_sat_en | 0|acc |79.13|± | 2.84| |
|
| | |acc_norm|72.33|± | 3.12| |
|
|agieval_sat_en_without_passage| 0|acc |44.17|± | 3.47| |
|
| | |acc_norm|42.72|± | 3.45| |
|
|agieval_sat_math | 0|acc |52.27|± | 3.38| |
|
| | |acc_norm|47.73|± | 3.38| |
|
|
|
Average: 43.55% |
|
``` |
|
|
|
### GPT4All |
|
``` |
|
| Task |Version| Metric |Value| |Stderr| |
|
|-------------|------:|--------|----:|---|-----:| |
|
|arc_challenge| 0|acc |54.95|± | 1.45| |
|
| | |acc_norm|58.70|± | 1.44| |
|
|arc_easy | 0|acc |82.28|± | 0.78| |
|
| | |acc_norm|81.10|± | 0.80| |
|
|boolq | 1|acc |86.15|± | 0.60| |
|
|hellaswag | 0|acc |59.16|± | 0.49| |
|
| | |acc_norm|77.53|± | 0.42| |
|
|openbookqa | 0|acc |37.40|± | 2.17| |
|
| | |acc_norm|44.00|± | 2.22| |
|
|piqa | 0|acc |79.00|± | 0.95| |
|
| | |acc_norm|80.25|± | 0.93| |
|
|winogrande | 0|acc |72.61|± | 1.25| |
|
|
|
Average: 71.48% |
|
``` |
|
|
|
### TruthfulQA |
|
``` |
|
| Task |Version|Metric|Value| |Stderr| |
|
|-------------|------:|------|----:|---|-----:| |
|
|truthfulqa_mc| 1|mc1 |33.05|± | 1.65| |
|
| | |mc2 |48.54|± | 1.54| |
|
|
|
Average: 48.54% |
|
``` |
|
|
|
### Bigbench |
|
``` |
|
| Task |Version| Metric |Value| |Stderr| |
|
|------------------------------------------------|------:|---------------------|----:|---|-----:| |
|
|bigbench_causal_judgement | 0|multiple_choice_grade|54.74|± | 3.62| |
|
|bigbench_date_understanding | 0|multiple_choice_grade|68.02|± | 2.43| |
|
|bigbench_disambiguation_qa | 0|multiple_choice_grade|40.31|± | 3.06| |
|
|bigbench_geometric_shapes | 0|multiple_choice_grade|30.36|± | 2.43| |
|
| | |exact_str_match | 2.23|± | 0.78| |
|
|bigbench_logical_deduction_five_objects | 0|multiple_choice_grade|26.00|± | 1.96| |
|
|bigbench_logical_deduction_seven_objects | 0|multiple_choice_grade|20.71|± | 1.53| |
|
|bigbench_logical_deduction_three_objects | 0|multiple_choice_grade|44.00|± | 2.87| |
|
|bigbench_movie_recommendation | 0|multiple_choice_grade|35.00|± | 2.14| |
|
|bigbench_navigate | 0|multiple_choice_grade|58.40|± | 1.56| |
|
|bigbench_reasoning_about_colored_objects | 0|multiple_choice_grade|61.80|± | 1.09| |
|
|bigbench_ruin_names | 0|multiple_choice_grade|42.41|± | 2.34| |
|
|bigbench_salient_translation_error_detection | 0|multiple_choice_grade|31.56|± | 1.47| |
|
|bigbench_snarks | 0|multiple_choice_grade|55.25|± | 3.71| |
|
|bigbench_sports_understanding | 0|multiple_choice_grade|69.37|± | 1.47| |
|
|bigbench_temporal_sequences | 0|multiple_choice_grade|27.70|± | 1.42| |
|
|bigbench_tracking_shuffled_objects_five_objects | 0|multiple_choice_grade|21.36|± | 1.16| |
|
|bigbench_tracking_shuffled_objects_seven_objects| 0|multiple_choice_grade|14.69|± | 0.85| |
|
|bigbench_tracking_shuffled_objects_three_objects| 0|multiple_choice_grade|44.00|± | 2.87| |
|
|
|
Average: 41.43% |
|
``` |
|
|
|
**Average score**: 51.25% |
|
|
|
|
|
### OpenLLM Benchmark: |
|
|
|
| Model |ARC |HellaSwag|MMLU |TruthfulQA|Winogrande|GSM8K|Average| |
|
|---------------------------------------------------|---:|--------:|----:|---------:|---------:|----:|------:| |
|
|[Master-Yi-9B](https://huggingface.co/qnguyen3/Master-Yi-9B)|61.6| 79.89|69.95| 48.59| 77.35|67.48| 67.48| |
|
|
|
### ARC |
|
``` |
|
| Task |Version| Metric | Value | |Stderr| |
|
|-------------|------:|--------------------|-------------|---|------| |
|
|arc_challenge| 1|acc,none | 0.59| | | |
|
| | |acc_stderr,none | 0.01| | | |
|
| | |acc_norm,none | 0.62| | | |
|
| | |acc_norm_stderr,none| 0.01| | | |
|
| | |alias |arc_challenge| | | |
|
|
|
Average: 61.6% |
|
``` |
|
|
|
### HellaSwag |
|
``` |
|
| Task |Version| Metric | Value | |Stderr| |
|
|---------|------:|--------------------|---------|---|------| |
|
|hellaswag| 1|acc,none | 0.61| | | |
|
| | |acc_stderr,none | 0| | | |
|
| | |acc_norm,none | 0.80| | | |
|
| | |acc_norm_stderr,none| 0| | | |
|
| | |alias |hellaswag| | | |
|
|
|
Average: 79.89% |
|
``` |
|
|
|
### MMLU |
|
``` |
|
| Task |Version| Metric | Value | |Stderr| |
|
|----------------------------------------|-------|---------------|---------------------------------------|---|------| |
|
|mmlu |N/A |acc,none | 0.7| | | |
|
| | |acc_stderr,none| 0| | | |
|
| | |alias |mmlu | | | |
|
|mmlu_abstract_algebra | 0|alias | - abstract_algebra | | | |
|
| | |acc,none |0.46 | | | |
|
| | |acc_stderr,none|0.05 | | | |
|
|mmlu_anatomy | 0|alias | - anatomy | | | |
|
| | |acc,none |0.64 | | | |
|
| | |acc_stderr,none|0.04 | | | |
|
|mmlu_astronomy | 0|alias | - astronomy | | | |
|
| | |acc,none |0.77 | | | |
|
| | |acc_stderr,none|0.03 | | | |
|
|mmlu_business_ethics | 0|alias | - business_ethics | | | |
|
| | |acc,none |0.76 | | | |
|
| | |acc_stderr,none|0.04 | | | |
|
|mmlu_clinical_knowledge | 0|alias | - clinical_knowledge | | | |
|
| | |acc,none |0.71 | | | |
|
| | |acc_stderr,none|0.03 | | | |
|
|mmlu_college_biology | 0|alias | - college_biology | | | |
|
| | |acc,none |0.82 | | | |
|
| | |acc_stderr,none|0.03 | | | |
|
|mmlu_college_chemistry | 0|alias | - college_chemistry | | | |
|
| | |acc,none |0.52 | | | |
|
| | |acc_stderr,none|0.05 | | | |
|
|mmlu_college_computer_science | 0|alias | - college_computer_science | | | |
|
| | |acc,none |0.56 | | | |
|
| | |acc_stderr,none|0.05 | | | |
|
|mmlu_college_mathematics | 0|alias | - college_mathematics | | | |
|
| | |acc,none |0.44 | | | |
|
| | |acc_stderr,none|0.05 | | | |
|
|mmlu_college_medicine | 0|alias | - college_medicine | | | |
|
| | |acc,none |0.72 | | | |
|
| | |acc_stderr,none|0.03 | | | |
|
|mmlu_college_physics | 0|alias | - college_physics | | | |
|
| | |acc,none |0.45 | | | |
|
| | |acc_stderr,none|0.05 | | | |
|
|mmlu_computer_security | 0|alias | - computer_security | | | |
|
| | |acc,none |0.81 | | | |
|
| | |acc_stderr,none|0.04 | | | |
|
|mmlu_conceptual_physics | 0|alias | - conceptual_physics | | | |
|
| | |acc,none |0.74 | | | |
|
| | |acc_stderr,none|0.03 | | | |
|
|mmlu_econometrics | 0|alias | - econometrics | | | |
|
| | |acc,none |0.65 | | | |
|
| | |acc_stderr,none|0.04 | | | |
|
|mmlu_electrical_engineering | 0|alias | - electrical_engineering | | | |
|
| | |acc,none |0.72 | | | |
|
| | |acc_stderr,none|0.04 | | | |
|
|mmlu_elementary_mathematics | 0|alias | - elementary_mathematics | | | |
|
| | |acc,none |0.62 | | | |
|
| | |acc_stderr,none|0.02 | | | |
|
|mmlu_formal_logic | 0|alias | - formal_logic | | | |
|
| | |acc,none |0.57 | | | |
|
| | |acc_stderr,none|0.04 | | | |
|
|mmlu_global_facts | 0|alias | - global_facts | | | |
|
| | |acc,none |0.46 | | | |
|
| | |acc_stderr,none|0.05 | | | |
|
|mmlu_high_school_biology | 0|alias | - high_school_biology | | | |
|
| | |acc,none |0.86 | | | |
|
| | |acc_stderr,none|0.02 | | | |
|
|mmlu_high_school_chemistry | 0|alias | - high_school_chemistry | | | |
|
| | |acc,none |0.67 | | | |
|
| | |acc_stderr,none|0.03 | | | |
|
|mmlu_high_school_computer_science | 0|alias | - high_school_computer_science | | | |
|
| | |acc,none |0.84 | | | |
|
| | |acc_stderr,none|0.04 | | | |
|
|mmlu_high_school_european_history | 0|alias | - high_school_european_history | | | |
|
| | |acc,none |0.82 | | | |
|
| | |acc_stderr,none|0.03 | | | |
|
|mmlu_high_school_geography | 0|alias | - high_school_geography | | | |
|
| | |acc,none |0.86 | | | |
|
| | |acc_stderr,none|0.02 | | | |
|
|mmlu_high_school_government_and_politics| 0|alias | - high_school_government_and_politics| | | |
|
| | |acc,none |0.90 | | | |
|
| | |acc_stderr,none|0.02 | | | |
|
|mmlu_high_school_macroeconomics | 0|alias | - high_school_macroeconomics | | | |
|
| | |acc,none |0.75 | | | |
|
| | |acc_stderr,none|0.02 | | | |
|
|mmlu_high_school_mathematics | 0|alias | - high_school_mathematics | | | |
|
| | |acc,none |0.43 | | | |
|
| | |acc_stderr,none|0.03 | | | |
|
|mmlu_high_school_microeconomics | 0|alias | - high_school_microeconomics | | | |
|
| | |acc,none |0.86 | | | |
|
| | |acc_stderr,none|0.02 | | | |
|
|mmlu_high_school_physics | 0|alias | - high_school_physics | | | |
|
| | |acc,none |0.45 | | | |
|
| | |acc_stderr,none|0.04 | | | |
|
|mmlu_high_school_psychology | 0|alias | - high_school_psychology | | | |
|
| | |acc,none |0.87 | | | |
|
| | |acc_stderr,none|0.01 | | | |
|
|mmlu_high_school_statistics | 0|alias | - high_school_statistics | | | |
|
| | |acc,none |0.68 | | | |
|
| | |acc_stderr,none|0.03 | | | |
|
|mmlu_high_school_us_history | 0|alias | - high_school_us_history | | | |
|
| | |acc,none |0.85 | | | |
|
| | |acc_stderr,none|0.02 | | | |
|
|mmlu_high_school_world_history | 0|alias | - high_school_world_history | | | |
|
| | |acc,none |0.85 | | | |
|
| | |acc_stderr,none|0.02 | | | |
|
|mmlu_human_aging | 0|alias | - human_aging | | | |
|
| | |acc,none |0.76 | | | |
|
| | |acc_stderr,none|0.03 | | | |
|
|mmlu_human_sexuality | 0|alias | - human_sexuality | | | |
|
| | |acc,none |0.78 | | | |
|
| | |acc_stderr,none|0.04 | | | |
|
|mmlu_humanities |N/A |alias | - humanities | | | |
|
| | |acc,none |0.63 | | | |
|
| | |acc_stderr,none|0.01 | | | |
|
|mmlu_international_law | 0|alias | - international_law | | | |
|
| | |acc,none |0.79 | | | |
|
| | |acc_stderr,none|0.04 | | | |
|
|mmlu_jurisprudence | 0|alias | - jurisprudence | | | |
|
| | |acc,none |0.79 | | | |
|
| | |acc_stderr,none|0.04 | | | |
|
|mmlu_logical_fallacies | 0|alias | - logical_fallacies | | | |
|
| | |acc,none |0.80 | | | |
|
| | |acc_stderr,none|0.03 | | | |
|
|mmlu_machine_learning | 0|alias | - machine_learning | | | |
|
| | |acc,none |0.52 | | | |
|
| | |acc_stderr,none|0.05 | | | |
|
|mmlu_management | 0|alias | - management | | | |
|
| | |acc,none |0.83 | | | |
|
| | |acc_stderr,none|0.04 | | | |
|
|mmlu_marketing | 0|alias | - marketing | | | |
|
| | |acc,none |0.89 | | | |
|
| | |acc_stderr,none|0.02 | | | |
|
|mmlu_medical_genetics | 0|alias | - medical_genetics | | | |
|
| | |acc,none |0.78 | | | |
|
| | |acc_stderr,none|0.04 | | | |
|
|mmlu_miscellaneous | 0|alias | - miscellaneous | | | |
|
| | |acc,none |0.85 | | | |
|
| | |acc_stderr,none|0.01 | | | |
|
|mmlu_moral_disputes | 0|alias | - moral_disputes | | | |
|
| | |acc,none |0.75 | | | |
|
| | |acc_stderr,none|0.02 | | | |
|
|mmlu_moral_scenarios | 0|alias | - moral_scenarios | | | |
|
| | |acc,none |0.48 | | | |
|
| | |acc_stderr,none|0.02 | | | |
|
|mmlu_nutrition | 0|alias | - nutrition | | | |
|
| | |acc,none |0.77 | | | |
|
| | |acc_stderr,none|0.02 | | | |
|
|mmlu_other |N/A |alias | - other | | | |
|
| | |acc,none |0.75 | | | |
|
| | |acc_stderr,none|0.01 | | | |
|
|mmlu_philosophy | 0|alias | - philosophy | | | |
|
| | |acc,none |0.78 | | | |
|
| | |acc_stderr,none|0.02 | | | |
|
|mmlu_prehistory | 0|alias | - prehistory | | | |
|
| | |acc,none |0.77 | | | |
|
| | |acc_stderr,none|0.02 | | | |
|
|mmlu_professional_accounting | 0|alias | - professional_accounting | | | |
|
| | |acc,none |0.57 | | | |
|
| | |acc_stderr,none|0.03 | | | |
|
|mmlu_professional_law | 0|alias | - professional_law | | | |
|
| | |acc,none |0.50 | | | |
|
| | |acc_stderr,none|0.01 | | | |
|
|mmlu_professional_medicine | 0|alias | - professional_medicine | | | |
|
| | |acc,none |0.71 | | | |
|
| | |acc_stderr,none|0.03 | | | |
|
|mmlu_professional_psychology | 0|alias | - professional_psychology | | | |
|
| | |acc,none |0.73 | | | |
|
| | |acc_stderr,none|0.02 | | | |
|
|mmlu_public_relations | 0|alias | - public_relations | | | |
|
| | |acc,none |0.76 | | | |
|
| | |acc_stderr,none|0.04 | | | |
|
|mmlu_security_studies | 0|alias | - security_studies | | | |
|
| | |acc,none |0.78 | | | |
|
| | |acc_stderr,none|0.03 | | | |
|
|mmlu_social_sciences |N/A |alias | - social_sciences | | | |
|
| | |acc,none |0.81 | | | |
|
| | |acc_stderr,none|0.01 | | | |
|
|mmlu_sociology | 0|alias | - sociology | | | |
|
| | |acc,none |0.86 | | | |
|
| | |acc_stderr,none|0.02 | | | |
|
|mmlu_stem |N/A |alias | - stem | | | |
|
| | |acc,none |0.65 | | | |
|
| | |acc_stderr,none|0.01 | | | |
|
|mmlu_us_foreign_policy | 0|alias | - us_foreign_policy | | | |
|
| | |acc,none |0.92 | | | |
|
| | |acc_stderr,none|0.03 | | | |
|
|mmlu_virology | 0|alias | - virology | | | |
|
| | |acc,none |0.58 | | | |
|
| | |acc_stderr,none|0.04 | | | |
|
|mmlu_world_religions | 0|alias | - world_religions | | | |
|
| | |acc,none |0.82 | | | |
|
| | |acc_stderr,none|0.03 | | | |
|
|
|
Average: 69.95% |
|
``` |
|
|
|
### TruthfulQA |
|
``` |
|
| Task |Version| Metric | Value | |Stderr| |
|
|--------------|-------|-----------------------|-----------------|---|------| |
|
|truthfulqa |N/A |bleu_acc,none | 0.45| | | |
|
| | |bleu_acc_stderr,none | 0.02| | | |
|
| | |rouge1_acc,none | 0.45| | | |
|
| | |rouge1_acc_stderr,none | 0.02| | | |
|
| | |rouge2_diff,none | 0.92| | | |
|
| | |rouge2_diff_stderr,none| 1.07| | | |
|
| | |bleu_max,none | 23.77| | | |
|
| | |bleu_max_stderr,none | 0.81| | | |
|
| | |rouge2_acc,none | 0.38| | | |
|
| | |rouge2_acc_stderr,none | 0.02| | | |
|
| | |acc,none | 0.41| | | |
|
| | |acc_stderr,none | 0.01| | | |
|
| | |rougeL_diff,none | 1.57| | | |
|
| | |rougeL_diff_stderr,none| 0.93| | | |
|
| | |rougeL_acc,none | 0.46| | | |
|
| | |rougeL_acc_stderr,none | 0.02| | | |
|
| | |bleu_diff,none | 1.38| | | |
|
| | |bleu_diff_stderr,none | 0.75| | | |
|
| | |rouge2_max,none | 33.01| | | |
|
| | |rouge2_max_stderr,none | 1.05| | | |
|
| | |rouge1_diff,none | 1.72| | | |
|
| | |rouge1_diff_stderr,none| 0.92| | | |
|
| | |rougeL_max,none | 45.25| | | |
|
| | |rougeL_max_stderr,none | 0.92| | | |
|
| | |rouge1_max,none | 48.29| | | |
|
| | |rouge1_max_stderr,none | 0.90| | | |
|
| | |alias |truthfulqa | | | |
|
|truthfulqa_gen| 3|bleu_max,none | 23.77| | | |
|
| | |bleu_max_stderr,none | 0.81| | | |
|
| | |bleu_acc,none | 0.45| | | |
|
| | |bleu_acc_stderr,none | 0.02| | | |
|
| | |bleu_diff,none | 1.38| | | |
|
| | |bleu_diff_stderr,none | 0.75| | | |
|
| | |rouge1_max,none | 48.29| | | |
|
| | |rouge1_max_stderr,none | 0.90| | | |
|
| | |rouge1_acc,none | 0.45| | | |
|
| | |rouge1_acc_stderr,none | 0.02| | | |
|
| | |rouge1_diff,none | 1.72| | | |
|
| | |rouge1_diff_stderr,none| 0.92| | | |
|
| | |rouge2_max,none | 33.01| | | |
|
| | |rouge2_max_stderr,none | 1.05| | | |
|
| | |rouge2_acc,none | 0.38| | | |
|
| | |rouge2_acc_stderr,none | 0.02| | | |
|
| | |rouge2_diff,none | 0.92| | | |
|
| | |rouge2_diff_stderr,none| 1.07| | | |
|
| | |rougeL_max,none | 45.25| | | |
|
| | |rougeL_max_stderr,none | 0.92| | | |
|
| | |rougeL_acc,none | 0.46| | | |
|
| | |rougeL_acc_stderr,none | 0.02| | | |
|
| | |rougeL_diff,none | 1.57| | | |
|
| | |rougeL_diff_stderr,none| 0.93| | | |
|
| | |alias | - truthfulqa_gen| | | |
|
|truthfulqa_mc1| 2|acc,none | 0.33| | | |
|
| | |acc_stderr,none | 0.02| | | |
|
| | |alias | - truthfulqa_mc1| | | |
|
|truthfulqa_mc2| 2|acc,none | 0.49| | | |
|
| | |acc_stderr,none | 0.02| | | |
|
| | |alias | - truthfulqa_mc2| | | |
|
|
|
Average: 48.59% |
|
``` |
|
|
|
### Winogrande |
|
``` |
|
| Task |Version| Metric | Value | |Stderr| |
|
|----------|------:|---------------|----------|---|------| |
|
|winogrande| 1|acc,none | 0.77| | | |
|
| | |acc_stderr,none| 0.01| | | |
|
| | |alias |winogrande| | | |
|
|
|
Average: 77.35% |
|
``` |
|
|
|
### GSM8K |
|
``` |
|
|Task |Version| Metric |Value| |Stderr| |
|
|-----|------:|-----------------------------------|-----|---|------| |
|
|gsm8k| 3|exact_match,strict-match | 0.67| | | |
|
| | |exact_match_stderr,strict-match | 0.01| | | |
|
| | |exact_match,flexible-extract | 0.68| | | |
|
| | |exact_match_stderr,flexible-extract| 0.01| | | |
|
| | |alias |gsm8k| | | |
|
|
|
Average: 67.48% |
|
``` |
|
|
|
**Average score**: 67.48% |
|
|