|
# Adverse Weather Image Translation with Asymmetric and Uncertainty-aware GAN (AU-GAN) |
|
Official Tensorflow implementation of [Adverse Weather Image Translation with Asymmetric and Uncertainty-aware GAN](https://www.bmvc2021-virtualconference.com/assets/papers/1443.pdf) (AU-GAN)\ |
|
Jeong-gi Kwak, Youngsaeng Jin, Yuanming Li, Dongsik Yoon, Donghyeon Kim and Hanseok Ko </br> |
|
*British Machine Vision Conference (BMVC), 2021* |
|
</br> |
|
|
|
## Intro |
|
|
|
### Night → Day ([BDD100K](https://bdd-data.berkeley.edu/)) |
|
<img src="./assets/augan_bdd.png" width="800"> |
|
|
|
### Rainy night → Day ([Alderdey](https://wiki.qut.edu.au/pages/viewpage.action?pageId=181178395)) |
|
<img src="./assets/augan_alderley.png" width="800"> |
|
</br> |
|
|
|
|
|
## Architecture |
|
<img src="./assets/augan_model.png" width="800"> |
|
Our generator has asymmetric structure for editing day→night and night→day. |
|
Please refer our paper for details |
|
|
|
## **Envs** |
|
|
|
```bash |
|
|
|
git clone https://github.com/jgkwak95/AU-GAN.git |
|
cd AU-GAN |
|
|
|
# Create virtual environment |
|
conda create -y --name augan python=3.6.7 |
|
conda activate augan |
|
|
|
conda install tensorflow-gpu==1.14.0 # Tensorflow 1.14 |
|
pip install --no-cache-dir -r requirements.txt |
|
|
|
``` |
|
|
|
## **Preparing datasets** |
|
|
|
**Night → Day** </br> |
|
[Berkeley DeepDrive dataset](https://bdd-data.berkeley.edu/) contains 100,000 high resolution images of the urban roads for autonomous driving.</br></br> |
|
**Rainy night → Day** </br> |
|
[Alderley dataset](https://wiki.qut.edu.au/pages/viewpage.action?pageId=181178395) consists of images of two domains, |
|
rainy night and daytime. It was collected while driving the same route in each weather environment.</br> |
|
</br> |
|
Please download datasets and then construct them following [ForkGAN](https://github.com/zhengziqiang/ForkGAN) |
|
|
|
## Pretrained Model |
|
|
|
Download the pretrained model for BDD100K(256x512) [here](https://drive.google.com/file/d/1rvIF3yE9MwPWj0kD4IEstETyMQXYAHzr/view?usp=sharing) and unzip it to ./check/bdd_exp/bdd100k_256/ |
|
|
|
## Training |
|
|
|
```bash |
|
|
|
# Alderley (256x512) |
|
python main_uncer.py --dataset_dir alderley |
|
--phase train |
|
--experiment_name alderley_exp |
|
--batch_size 8 |
|
--load_size 286 |
|
--fine_size 256 |
|
--use_uncertainty True |
|
|
|
``` |
|
|
|
```bash |
|
|
|
# BDD100k (256x512) |
|
python main_uncer.py --dataset_dir bdd100k |
|
--phase train |
|
--experiment_name bdd_exp |
|
--batch_size 8 |
|
--load_size 286 |
|
--fine_size 256 |
|
--use_uncertainty True |
|
|
|
``` |
|
|
|
## Test |
|
|
|
```bash |
|
|
|
# Alderley (256x512) |
|
python main_uncer.py --dataset_dir alderley |
|
--phase test |
|
--experiment_name alderley_exp |
|
--batch_size 1 |
|
--load_size 286 |
|
--fine_size 256 |
|
|
|
``` |
|
|
|
```bash |
|
|
|
# BDD100k (256x512) |
|
python main_uncer.py --dataset_dir bdd100k |
|
--phase test |
|
--experiment_name bdd_exp |
|
--batch_size 1 |
|
--load_size 286 |
|
--fine_size 256 |
|
|
|
|
|
``` |
|
## Additional results |
|
<img src="./assets/augan_result.png" width="800"> |
|
|
|
More results in [paper](https://www.bmvc2021-virtualconference.com/assets/papers/1443.pdf) and [supplementary]() |
|
|
|
## Uncertainty map |
|
<img src="./assets/augan_uncer.png" width="800"> |
|
|
|
## **Citation** |
|
If our code is helpful your research, please cite our paper: |
|
``` |
|
@article{kwak2021adverse, |
|
title={Adverse weather image translation with asymmetric and uncertainty-aware GAN}, |
|
author={Kwak, Jeong-gi and Jin, Youngsaeng and Li, Yuanming and Yoon, Dongsik and Kim, Donghyeon and Ko, Hanseok}, |
|
journal={arXiv preprint arXiv:2112.04283}, |
|
year={2021} |
|
} |
|
``` |
|
## Acknowledgments |
|
Our code is bulided upon the [ForkGAN](https://www.ecva.net/papers/eccv_2020/papers_ECCV/papers/123480154.pdf) implementation. |
|
|