BASE_short / README.md
qqplot23's picture
Model save
9cf0431
metadata
license: mit
base_model: gpt2
tags:
  - generated_from_trainer
model-index:
  - name: BASE_short
    results: []

BASE_short

This model is a fine-tuned version of gpt2 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 3.3241
  • Ppl: 28.7555

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 22554
  • distributed_type: multi-GPU
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 2000
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Ppl
4.4673 1.25 4000 4.2416 71.9939
3.8603 2.5 8000 3.7253 43.0163
3.638 3.75 12000 3.5322 35.4396
3.5229 5.01 16000 3.4322 32.0556
3.4377 6.26 20000 3.3749 30.2611
3.3972 7.51 24000 3.3411 29.2534
3.3688 8.76 28000 3.3241 28.7555

Framework versions

  • Transformers 4.35.0.dev0
  • Pytorch 1.13.1+cu117
  • Datasets 2.14.6
  • Tokenizers 0.14.1