Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
@@ -135,14 +135,11 @@ from qai_hub_models.models.mediapipe_pose import MediaPipePoseDetector,MediaPipe
|
|
135 |
|
136 |
# Load the model
|
137 |
pose_detector_model = MediaPipePoseDetector.from_pretrained()
|
138 |
-
|
139 |
pose_landmark_detector_model = MediaPipePoseLandmarkDetector.from_pretrained()
|
140 |
|
141 |
-
|
142 |
# Device
|
143 |
device = hub.Device("Samsung Galaxy S23")
|
144 |
|
145 |
-
|
146 |
# Trace model
|
147 |
pose_detector_input_shape = pose_detector_model.get_input_spec()
|
148 |
pose_detector_sample_inputs = pose_detector_model.sample_inputs()
|
@@ -158,7 +155,6 @@ pose_detector_compile_job = hub.submit_compile_job(
|
|
158 |
|
159 |
# Get target model to run on-device
|
160 |
pose_detector_target_model = pose_detector_compile_job.get_target_model()
|
161 |
-
|
162 |
# Trace model
|
163 |
pose_landmark_detector_input_shape = pose_landmark_detector_model.get_input_spec()
|
164 |
pose_landmark_detector_sample_inputs = pose_landmark_detector_model.sample_inputs()
|
@@ -185,12 +181,10 @@ After compiling models from step 1. Models can be profiled model on-device using
|
|
185 |
provisioned in the cloud. Once the job is submitted, you can navigate to a
|
186 |
provided job URL to view a variety of on-device performance metrics.
|
187 |
```python
|
188 |
-
|
189 |
pose_detector_profile_job = hub.submit_profile_job(
|
190 |
model=pose_detector_target_model,
|
191 |
device=device,
|
192 |
)
|
193 |
-
|
194 |
pose_landmark_detector_profile_job = hub.submit_profile_job(
|
195 |
model=pose_landmark_detector_target_model,
|
196 |
device=device,
|
|
|
135 |
|
136 |
# Load the model
|
137 |
pose_detector_model = MediaPipePoseDetector.from_pretrained()
|
|
|
138 |
pose_landmark_detector_model = MediaPipePoseLandmarkDetector.from_pretrained()
|
139 |
|
|
|
140 |
# Device
|
141 |
device = hub.Device("Samsung Galaxy S23")
|
142 |
|
|
|
143 |
# Trace model
|
144 |
pose_detector_input_shape = pose_detector_model.get_input_spec()
|
145 |
pose_detector_sample_inputs = pose_detector_model.sample_inputs()
|
|
|
155 |
|
156 |
# Get target model to run on-device
|
157 |
pose_detector_target_model = pose_detector_compile_job.get_target_model()
|
|
|
158 |
# Trace model
|
159 |
pose_landmark_detector_input_shape = pose_landmark_detector_model.get_input_spec()
|
160 |
pose_landmark_detector_sample_inputs = pose_landmark_detector_model.sample_inputs()
|
|
|
181 |
provisioned in the cloud. Once the job is submitted, you can navigate to a
|
182 |
provided job URL to view a variety of on-device performance metrics.
|
183 |
```python
|
|
|
184 |
pose_detector_profile_job = hub.submit_profile_job(
|
185 |
model=pose_detector_target_model,
|
186 |
device=device,
|
187 |
)
|
|
|
188 |
pose_landmark_detector_profile_job = hub.submit_profile_job(
|
189 |
model=pose_landmark_detector_target_model,
|
190 |
device=device,
|