YOLOv8-Detection: Optimized for Mobile Deployment

Real-time object detection optimized for mobile and edge by Ultralytics

Ultralytics YOLOv8 is a machine learning model that predicts bounding boxes and classes of objects in an image.

This model is an implementation of YOLOv8-Detection found here.

More details on model performance across various devices, can be found here.

Model Details

  • Model Type: Object detection
  • Model Stats:
    • Model checkpoint: YOLOv8-N
    • Input resolution: 640x640
    • Number of parameters: 3.18M
    • Model size: 12.2 MB
Model Device Chipset Target Runtime Inference Time (ms) Peak Memory Range (MB) Precision Primary Compute Unit Target Model
YOLOv8-Detection Samsung Galaxy S23 Snapdragon® 8 Gen 2 TFLITE 5.826 ms 0 - 13 MB FP16 NPU --
YOLOv8-Detection Samsung Galaxy S23 Snapdragon® 8 Gen 2 QNN 4.472 ms 5 - 16 MB FP16 NPU --
YOLOv8-Detection Samsung Galaxy S23 Snapdragon® 8 Gen 2 ONNX 5.425 ms 5 - 31 MB FP16 NPU --
YOLOv8-Detection Samsung Galaxy S24 Snapdragon® 8 Gen 3 TFLITE 4.21 ms 0 - 38 MB FP16 NPU --
YOLOv8-Detection Samsung Galaxy S24 Snapdragon® 8 Gen 3 QNN 3.157 ms 5 - 45 MB FP16 NPU --
YOLOv8-Detection Samsung Galaxy S24 Snapdragon® 8 Gen 3 ONNX 3.546 ms 2 - 56 MB FP16 NPU --
YOLOv8-Detection Snapdragon 8 Elite QRD Snapdragon® 8 Elite TFLITE 3.395 ms 0 - 34 MB FP16 NPU --
YOLOv8-Detection Snapdragon 8 Elite QRD Snapdragon® 8 Elite QNN 2.431 ms 5 - 39 MB FP16 NPU --
YOLOv8-Detection Snapdragon 8 Elite QRD Snapdragon® 8 Elite ONNX 3.029 ms 1 - 38 MB FP16 NPU --
YOLOv8-Detection SA7255P ADP SA7255P TFLITE 71.971 ms 0 - 27 MB FP16 NPU --
YOLOv8-Detection SA7255P ADP SA7255P QNN 69.017 ms 4 - 13 MB FP16 NPU --
YOLOv8-Detection SA8255 (Proxy) SA8255P Proxy TFLITE 5.851 ms 0 - 12 MB FP16 NPU --
YOLOv8-Detection SA8255 (Proxy) SA8255P Proxy QNN 4.139 ms 5 - 7 MB FP16 NPU --
YOLOv8-Detection SA8295P ADP SA8295P TFLITE 9.615 ms 0 - 25 MB FP16 NPU --
YOLOv8-Detection SA8295P ADP SA8295P QNN 7.728 ms 1 - 19 MB FP16 NPU --
YOLOv8-Detection SA8650 (Proxy) SA8650P Proxy TFLITE 5.788 ms 0 - 14 MB FP16 NPU --
YOLOv8-Detection SA8650 (Proxy) SA8650P Proxy QNN 4.026 ms 5 - 8 MB FP16 NPU --
YOLOv8-Detection SA8775P ADP SA8775P TFLITE 8.677 ms 0 - 27 MB FP16 NPU --
YOLOv8-Detection SA8775P ADP SA8775P QNN 6.624 ms 0 - 10 MB FP16 NPU --
YOLOv8-Detection QCS8275 (Proxy) QCS8275 Proxy TFLITE 71.971 ms 0 - 27 MB FP16 NPU --
YOLOv8-Detection QCS8275 (Proxy) QCS8275 Proxy QNN 69.017 ms 4 - 13 MB FP16 NPU --
YOLOv8-Detection QCS8550 (Proxy) QCS8550 Proxy TFLITE 5.795 ms 0 - 15 MB FP16 NPU --
YOLOv8-Detection QCS8550 (Proxy) QCS8550 Proxy QNN 4.043 ms 5 - 8 MB FP16 NPU --
YOLOv8-Detection QCS9075 (Proxy) QCS9075 Proxy TFLITE 8.677 ms 0 - 27 MB FP16 NPU --
YOLOv8-Detection QCS9075 (Proxy) QCS9075 Proxy QNN 6.624 ms 0 - 10 MB FP16 NPU --
YOLOv8-Detection QCS8450 (Proxy) QCS8450 Proxy TFLITE 8.925 ms 0 - 38 MB FP16 NPU --
YOLOv8-Detection QCS8450 (Proxy) QCS8450 Proxy QNN 7.237 ms 5 - 34 MB FP16 NPU --
YOLOv8-Detection Snapdragon X Elite CRD Snapdragon® X Elite QNN 4.458 ms 5 - 5 MB FP16 NPU --
YOLOv8-Detection Snapdragon X Elite CRD Snapdragon® X Elite ONNX 6.093 ms 5 - 5 MB FP16 NPU --

License

  • The license for the original implementation of YOLOv8-Detection can be found here.
  • The license for the compiled assets for on-device deployment can be found here

References

Community

Usage and Limitations

Model may not be used for or in connection with any of the following applications:

  • Accessing essential private and public services and benefits;
  • Administration of justice and democratic processes;
  • Assessing or recognizing the emotional state of a person;
  • Biometric and biometrics-based systems, including categorization of persons based on sensitive characteristics;
  • Education and vocational training;
  • Employment and workers management;
  • Exploitation of the vulnerabilities of persons resulting in harmful behavior;
  • General purpose social scoring;
  • Law enforcement;
  • Management and operation of critical infrastructure;
  • Migration, asylum and border control management;
  • Predictive policing;
  • Real-time remote biometric identification in public spaces;
  • Recommender systems of social media platforms;
  • Scraping of facial images (from the internet or otherwise); and/or
  • Subliminal manipulation
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support