YOLOv8-Detection-Quantized: Optimized for Mobile Deployment

Quantized real-time object detection optimized for mobile and edge by Ultralytics

Ultralytics YOLOv8 is a machine learning model that predicts bounding boxes and classes of objects in an image. This model is post-training quantized to int8 using samples from the COCO dataset.

This model is an implementation of YOLOv8-Detection-Quantized found here.

More details on model performance across various devices, can be found here.

Model Details

  • Model Type: Object detection
  • Model Stats:
    • Model checkpoint: YOLOv8-N
    • Input resolution: 640x640
    • Number of parameters: 3.18M
    • Model size: 3.26 MB
Model Device Chipset Target Runtime Inference Time (ms) Peak Memory Range (MB) Precision Primary Compute Unit Target Model
YOLOv8-Detection-Quantized Samsung Galaxy S23 Snapdragon® 8 Gen 2 TFLITE 1.909 ms 0 - 10 MB INT8 NPU --
YOLOv8-Detection-Quantized Samsung Galaxy S23 Snapdragon® 8 Gen 2 QNN 2.279 ms 1 - 12 MB INT8 NPU --
YOLOv8-Detection-Quantized Samsung Galaxy S23 Snapdragon® 8 Gen 2 ONNX 6.413 ms 0 - 31 MB INT8 NPU --
YOLOv8-Detection-Quantized Samsung Galaxy S24 Snapdragon® 8 Gen 3 TFLITE 1.286 ms 0 - 28 MB INT8 NPU --
YOLOv8-Detection-Quantized Samsung Galaxy S24 Snapdragon® 8 Gen 3 QNN 1.532 ms 1 - 41 MB INT8 NPU --
YOLOv8-Detection-Quantized Samsung Galaxy S24 Snapdragon® 8 Gen 3 ONNX 4.534 ms 1 - 55 MB INT8 NPU --
YOLOv8-Detection-Quantized Snapdragon 8 Elite QRD Snapdragon® 8 Elite TFLITE 1.214 ms 0 - 28 MB INT8 NPU --
YOLOv8-Detection-Quantized Snapdragon 8 Elite QRD Snapdragon® 8 Elite QNN 1.476 ms 1 - 32 MB INT8 NPU --
YOLOv8-Detection-Quantized Snapdragon 8 Elite QRD Snapdragon® 8 Elite ONNX 4.064 ms 0 - 49 MB INT8 NPU --
YOLOv8-Detection-Quantized RB3 Gen 2 (Proxy) QCS6490 Proxy TFLITE 4.743 ms 0 - 30 MB INT8 NPU --
YOLOv8-Detection-Quantized RB3 Gen 2 (Proxy) QCS6490 Proxy QNN 5.967 ms 1 - 12 MB INT8 NPU --
YOLOv8-Detection-Quantized RB5 (Proxy) QCS8250 Proxy TFLITE 49.035 ms 3 - 12 MB INT8 NPU --
YOLOv8-Detection-Quantized QCS8550 (Proxy) QCS8550 Proxy TFLITE 1.921 ms 0 - 13 MB INT8 NPU --
YOLOv8-Detection-Quantized QCS8550 (Proxy) QCS8550 Proxy QNN 2.038 ms 1 - 4 MB INT8 NPU --
YOLOv8-Detection-Quantized SA7255P ADP SA7255P TFLITE 11.668 ms 0 - 22 MB INT8 NPU --
YOLOv8-Detection-Quantized SA7255P ADP SA7255P QNN 12.004 ms 1 - 10 MB INT8 NPU --
YOLOv8-Detection-Quantized SA8255 (Proxy) SA8255P Proxy TFLITE 1.919 ms 0 - 6 MB INT8 NPU --
YOLOv8-Detection-Quantized SA8255 (Proxy) SA8255P Proxy QNN 2.036 ms 1 - 3 MB INT8 NPU --
YOLOv8-Detection-Quantized SA8295P ADP SA8295P TFLITE 2.833 ms 0 - 29 MB INT8 NPU --
YOLOv8-Detection-Quantized SA8295P ADP SA8295P QNN 3.225 ms 1 - 16 MB INT8 NPU --
YOLOv8-Detection-Quantized SA8650 (Proxy) SA8650P Proxy TFLITE 1.911 ms 0 - 10 MB INT8 NPU --
YOLOv8-Detection-Quantized SA8650 (Proxy) SA8650P Proxy QNN 2.036 ms 1 - 4 MB INT8 NPU --
YOLOv8-Detection-Quantized SA8775P ADP SA8775P TFLITE 2.871 ms 0 - 22 MB INT8 NPU --
YOLOv8-Detection-Quantized SA8775P ADP SA8775P QNN 3.109 ms 1 - 11 MB INT8 NPU --
YOLOv8-Detection-Quantized QCS8450 (Proxy) QCS8450 Proxy TFLITE 2.123 ms 0 - 34 MB INT8 NPU --
YOLOv8-Detection-Quantized QCS8450 (Proxy) QCS8450 Proxy QNN 2.556 ms 1 - 34 MB INT8 NPU --
YOLOv8-Detection-Quantized Snapdragon X Elite CRD Snapdragon® X Elite QNN 2.29 ms 1 - 1 MB INT8 NPU --
YOLOv8-Detection-Quantized Snapdragon X Elite CRD Snapdragon® X Elite ONNX 6.772 ms 5 - 5 MB INT8 NPU --

License

  • The license for the original implementation of YOLOv8-Detection-Quantized can be found here.
  • The license for the compiled assets for on-device deployment can be found here

References

Community

Usage and Limitations

Model may not be used for or in connection with any of the following applications:

  • Accessing essential private and public services and benefits;
  • Administration of justice and democratic processes;
  • Assessing or recognizing the emotional state of a person;
  • Biometric and biometrics-based systems, including categorization of persons based on sensitive characteristics;
  • Education and vocational training;
  • Employment and workers management;
  • Exploitation of the vulnerabilities of persons resulting in harmful behavior;
  • General purpose social scoring;
  • Law enforcement;
  • Management and operation of critical infrastructure;
  • Migration, asylum and border control management;
  • Predictive policing;
  • Real-time remote biometric identification in public spaces;
  • Recommender systems of social media platforms;
  • Scraping of facial images (from the internet or otherwise); and/or
  • Subliminal manipulation
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The HF Inference API does not support object-detection models for pytorch library.