YOLOv8-Segmentation: Optimized for Mobile Deployment

Real-time object segmentation optimized for mobile and edge by Ultralytics

Ultralytics YOLOv8 is a machine learning model that predicts bounding boxes, segmentation masks and classes of objects in an image.

This model is an implementation of YOLOv8-Segmentation found here.

More details on model performance across various devices, can be found here.

Model Details

  • Model Type: Semantic segmentation
  • Model Stats:
    • Model checkpoint: YOLOv8N-Seg
    • Input resolution: 640x640
    • Number of parameters: 3.43M
    • Model size: 13.2 MB
    • Number of output classes: 80
Model Device Chipset Target Runtime Inference Time (ms) Peak Memory Range (MB) Precision Primary Compute Unit Target Model
YOLOv8-Segmentation Samsung Galaxy S23 Snapdragon® 8 Gen 2 TFLITE 8.241 ms 4 - 22 MB FP16 NPU --
YOLOv8-Segmentation Samsung Galaxy S23 Snapdragon® 8 Gen 2 QNN 5.045 ms 5 - 8 MB FP16 NPU --
YOLOv8-Segmentation Samsung Galaxy S23 Snapdragon® 8 Gen 2 ONNX 7.991 ms 14 - 35 MB FP16 NPU --
YOLOv8-Segmentation Samsung Galaxy S24 Snapdragon® 8 Gen 3 TFLITE 5.977 ms 3 - 53 MB FP16 NPU --
YOLOv8-Segmentation Samsung Galaxy S24 Snapdragon® 8 Gen 3 QNN 3.606 ms 5 - 26 MB FP16 NPU --
YOLOv8-Segmentation Samsung Galaxy S24 Snapdragon® 8 Gen 3 ONNX 5.645 ms 15 - 73 MB FP16 NPU --
YOLOv8-Segmentation Snapdragon 8 Elite QRD Snapdragon® 8 Elite TFLITE 4.712 ms 3 - 50 MB FP16 NPU --
YOLOv8-Segmentation Snapdragon 8 Elite QRD Snapdragon® 8 Elite QNN 3.491 ms 5 - 51 MB FP16 NPU --
YOLOv8-Segmentation Snapdragon 8 Elite QRD Snapdragon® 8 Elite ONNX 5.392 ms 16 - 62 MB FP16 NPU --
YOLOv8-Segmentation SA7255P ADP SA7255P TFLITE 94.201 ms 4 - 44 MB FP16 NPU --
YOLOv8-Segmentation SA7255P ADP SA7255P QNN 90.446 ms 1 - 10 MB FP16 NPU --
YOLOv8-Segmentation SA8255 (Proxy) SA8255P Proxy TFLITE 8.139 ms 4 - 23 MB FP16 NPU --
YOLOv8-Segmentation SA8255 (Proxy) SA8255P Proxy QNN 5.086 ms 5 - 7 MB FP16 NPU --
YOLOv8-Segmentation SA8295P ADP SA8295P TFLITE 12.55 ms 4 - 32 MB FP16 NPU --
YOLOv8-Segmentation SA8295P ADP SA8295P QNN 9.13 ms 0 - 18 MB FP16 NPU --
YOLOv8-Segmentation SA8650 (Proxy) SA8650P Proxy TFLITE 8.21 ms 4 - 22 MB FP16 NPU --
YOLOv8-Segmentation SA8650 (Proxy) SA8650P Proxy QNN 4.972 ms 6 - 9 MB FP16 NPU --
YOLOv8-Segmentation SA8775P ADP SA8775P TFLITE 11.877 ms 4 - 44 MB FP16 NPU --
YOLOv8-Segmentation SA8775P ADP SA8775P QNN 8.055 ms 0 - 10 MB FP16 NPU --
YOLOv8-Segmentation QCS8275 (Proxy) QCS8275 Proxy TFLITE 94.201 ms 4 - 44 MB FP16 NPU --
YOLOv8-Segmentation QCS8275 (Proxy) QCS8275 Proxy QNN 90.446 ms 1 - 10 MB FP16 NPU --
YOLOv8-Segmentation QCS8550 (Proxy) QCS8550 Proxy TFLITE 8.132 ms 4 - 23 MB FP16 NPU --
YOLOv8-Segmentation QCS8550 (Proxy) QCS8550 Proxy QNN 4.946 ms 5 - 7 MB FP16 NPU --
YOLOv8-Segmentation QCS9075 (Proxy) QCS9075 Proxy TFLITE 11.877 ms 4 - 44 MB FP16 NPU --
YOLOv8-Segmentation QCS9075 (Proxy) QCS9075 Proxy QNN 8.055 ms 0 - 10 MB FP16 NPU --
YOLOv8-Segmentation QCS8450 (Proxy) QCS8450 Proxy TFLITE 11.583 ms 4 - 46 MB FP16 NPU --
YOLOv8-Segmentation QCS8450 (Proxy) QCS8450 Proxy QNN 9.371 ms 5 - 42 MB FP16 NPU --
YOLOv8-Segmentation Snapdragon X Elite CRD Snapdragon® X Elite QNN 5.382 ms 5 - 5 MB FP16 NPU --
YOLOv8-Segmentation Snapdragon X Elite CRD Snapdragon® X Elite ONNX 7.546 ms 17 - 17 MB FP16 NPU --

License

  • The license for the original implementation of YOLOv8-Segmentation can be found here.
  • The license for the compiled assets for on-device deployment can be found here

References

Community

Usage and Limitations

Model may not be used for or in connection with any of the following applications:

  • Accessing essential private and public services and benefits;
  • Administration of justice and democratic processes;
  • Assessing or recognizing the emotional state of a person;
  • Biometric and biometrics-based systems, including categorization of persons based on sensitive characteristics;
  • Education and vocational training;
  • Employment and workers management;
  • Exploitation of the vulnerabilities of persons resulting in harmful behavior;
  • General purpose social scoring;
  • Law enforcement;
  • Management and operation of critical infrastructure;
  • Migration, asylum and border control management;
  • Predictive policing;
  • Real-time remote biometric identification in public spaces;
  • Recommender systems of social media platforms;
  • Scraping of facial images (from the internet or otherwise); and/or
  • Subliminal manipulation
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The HF Inference API does not support image-segmentation models for pytorch library.