Yolo-NAS: Optimized for Mobile Deployment
Real-time object detection optimized for mobile and edge
YoloNAS is a machine learning model that predicts bounding boxes and classes of objects in an image.
This model is an implementation of Yolo-NAS found here.
More details on model performance accross various devices, can be found here.
Model Details
- Model Type: Object detection
- Model Stats:
- Model checkpoint: YoloNAS Small
- Input resolution: 640x640
- Number of parameters: 12.2M
- Model size: 46.6 MB
Model | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model |
---|---|---|---|---|---|---|---|---|
Yolo-NAS | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | TFLITE | 10.958 ms | 0 - 6 MB | FP16 | NPU | -- |
Yolo-NAS | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | QNN | 15.172 ms | 5 - 23 MB | FP16 | NPU | -- |
Yolo-NAS | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | ONNX | 7.696 ms | 0 - 43 MB | FP16 | NPU | -- |
Yolo-NAS | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | TFLITE | 7.343 ms | 0 - 107 MB | FP16 | NPU | -- |
Yolo-NAS | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | QNN | 10.083 ms | 5 - 37 MB | FP16 | NPU | -- |
Yolo-NAS | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | ONNX | 5.262 ms | 5 - 114 MB | FP16 | NPU | -- |
Yolo-NAS | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | TFLITE | 7.792 ms | 0 - 54 MB | FP16 | NPU | -- |
Yolo-NAS | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | QNN | 10.039 ms | 5 - 33 MB | FP16 | NPU | -- |
Yolo-NAS | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | ONNX | 5.173 ms | 2 - 55 MB | FP16 | NPU | -- |
Yolo-NAS | QCS8550 (Proxy) | QCS8550 Proxy | TFLITE | 10.788 ms | 0 - 6 MB | FP16 | NPU | -- |
Yolo-NAS | QCS8550 (Proxy) | QCS8550 Proxy | QNN | 9.522 ms | 5 - 6 MB | FP16 | NPU | -- |
Yolo-NAS | SA8255 (Proxy) | SA8255P Proxy | TFLITE | 10.945 ms | 0 - 7 MB | FP16 | NPU | -- |
Yolo-NAS | SA8255 (Proxy) | SA8255P Proxy | QNN | 9.618 ms | 5 - 6 MB | FP16 | NPU | -- |
Yolo-NAS | SA8775 (Proxy) | SA8775P Proxy | TFLITE | 10.927 ms | 0 - 7 MB | FP16 | NPU | -- |
Yolo-NAS | SA8775 (Proxy) | SA8775P Proxy | QNN | 9.478 ms | 5 - 6 MB | FP16 | NPU | -- |
Yolo-NAS | SA8650 (Proxy) | SA8650P Proxy | TFLITE | 10.917 ms | 0 - 36 MB | FP16 | NPU | -- |
Yolo-NAS | SA8650 (Proxy) | SA8650P Proxy | QNN | 9.574 ms | 5 - 6 MB | FP16 | NPU | -- |
Yolo-NAS | SA8295P ADP | SA8295P | TFLITE | 15.661 ms | 0 - 52 MB | FP16 | NPU | -- |
Yolo-NAS | SA8295P ADP | SA8295P | QNN | 14.181 ms | 0 - 5 MB | FP16 | NPU | -- |
Yolo-NAS | QCS8450 (Proxy) | QCS8450 Proxy | TFLITE | 13.931 ms | 0 - 103 MB | FP16 | NPU | -- |
Yolo-NAS | QCS8450 (Proxy) | QCS8450 Proxy | QNN | 18.521 ms | 5 - 36 MB | FP16 | NPU | -- |
Yolo-NAS | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN | 10.215 ms | 5 - 5 MB | FP16 | NPU | -- |
Yolo-NAS | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 8.304 ms | 21 - 21 MB | FP16 | NPU | -- |
License
- The license for the original implementation of Yolo-NAS can be found here.
- The license for the compiled assets for on-device deployment can be found here
References
- A Next-Generation, Object Detection Foundational Model generated by Deci’s Neural Architecture Search Technology
- Source Model Implementation
Community
- Join our AI Hub Slack community to collaborate, post questions and learn more about on-device AI.
- For questions or feedback please reach out to us.
Usage and Limitations
Model may not be used for or in connection with any of the following applications:
- Accessing essential private and public services and benefits;
- Administration of justice and democratic processes;
- Assessing or recognizing the emotional state of a person;
- Biometric and biometrics-based systems, including categorization of persons based on sensitive characteristics;
- Education and vocational training;
- Employment and workers management;
- Exploitation of the vulnerabilities of persons resulting in harmful behavior;
- General purpose social scoring;
- Law enforcement;
- Management and operation of critical infrastructure;
- Migration, asylum and border control management;
- Predictive policing;
- Real-time remote biometric identification in public spaces;
- Recommender systems of social media platforms;
- Scraping of facial images (from the internet or otherwise); and/or
- Subliminal manipulation
Inference API (serverless) does not yet support pytorch models for this pipeline type.