Yolo-v3 / README.md
qaihm-bot's picture
Upload README.md with huggingface_hub
eab1812 verified
|
raw
history blame
9.6 kB
metadata
library_name: pytorch
license: gpl-3.0
pipeline_tag: object-detection
tags:
  - real_time
  - android

Yolo-v3: Optimized for Mobile Deployment

Real-time object detection optimized for mobile and edge

YoloV3 is a machine learning model that predicts bounding boxes and classes of objects in an image.

This model is an implementation of Yolo-v3 found here.

This repository provides scripts to run Yolo-v3 on Qualcomm® devices. More details on model performance across various devices, can be found here.

Model Details

  • Model Type: Object detection
  • Model Stats:
    • Model checkpoint: YoloV3 Tiny
    • Input resolution: 416p (416x416)
    • Number of parameters: 8.85M
    • Model size: 24.4 MB
Model Device Chipset Target Runtime Inference Time (ms) Peak Memory Range (MB) Precision Primary Compute Unit Target Model
Yolo-v3 Samsung Galaxy S23 Snapdragon® 8 Gen 2 TFLITE 25.169 ms 0 - 14 MB FP16 NPU Yolo-v3.tflite
Yolo-v3 Samsung Galaxy S23 Snapdragon® 8 Gen 2 QNN 10.554 ms 5 - 18 MB FP16 NPU Yolo-v3.so
Yolo-v3 Samsung Galaxy S23 Snapdragon® 8 Gen 2 ONNX 15.005 ms 1 - 67 MB FP16 NPU Yolo-v3.onnx
Yolo-v3 Samsung Galaxy S24 Snapdragon® 8 Gen 3 TFLITE 18.236 ms 0 - 82 MB FP16 NPU Yolo-v3.tflite
Yolo-v3 Samsung Galaxy S24 Snapdragon® 8 Gen 3 QNN 7.599 ms 5 - 38 MB FP16 NPU Yolo-v3.so
Yolo-v3 Samsung Galaxy S24 Snapdragon® 8 Gen 3 ONNX 11.806 ms 13 - 46 MB FP16 NPU Yolo-v3.onnx
Yolo-v3 Snapdragon 8 Elite QRD Snapdragon® 8 Elite TFLITE 13.67 ms 0 - 77 MB FP16 NPU Yolo-v3.tflite
Yolo-v3 Snapdragon 8 Elite QRD Snapdragon® 8 Elite QNN 6.934 ms 5 - 36 MB FP16 NPU Use Export Script
Yolo-v3 Snapdragon 8 Elite QRD Snapdragon® 8 Elite ONNX 11.113 ms 14 - 42 MB FP16 NPU Yolo-v3.onnx
Yolo-v3 QCS8550 (Proxy) QCS8550 Proxy TFLITE 25.542 ms 0 - 10 MB FP16 NPU Yolo-v3.tflite
Yolo-v3 QCS8550 (Proxy) QCS8550 Proxy QNN 9.849 ms 5 - 8 MB FP16 NPU Use Export Script
Yolo-v3 QCS8450 (Proxy) QCS8450 Proxy TFLITE 27.446 ms 0 - 74 MB FP16 NPU Yolo-v3.tflite
Yolo-v3 QCS8450 (Proxy) QCS8450 Proxy QNN 12.187 ms 5 - 35 MB FP16 NPU Use Export Script
Yolo-v3 Snapdragon X Elite CRD Snapdragon® X Elite QNN 9.939 ms 5 - 5 MB FP16 NPU Use Export Script
Yolo-v3 Snapdragon X Elite CRD Snapdragon® X Elite ONNX 16.078 ms 5 - 5 MB FP16 NPU Yolo-v3.onnx

Installation

This model can be installed as a Python package via pip.

pip install "qai-hub-models[yolov3]"

Configure Qualcomm® AI Hub to run this model on a cloud-hosted device

Sign-in to Qualcomm® AI Hub with your Qualcomm® ID. Once signed in navigate to Account -> Settings -> API Token.

With this API token, you can configure your client to run models on the cloud hosted devices.

qai-hub configure --api_token API_TOKEN

Navigate to docs for more information.

Demo off target

The package contains a simple end-to-end demo that downloads pre-trained weights and runs this model on a sample input.

python -m qai_hub_models.models.yolov3.demo

The above demo runs a reference implementation of pre-processing, model inference, and post processing.

NOTE: If you want running in a Jupyter Notebook or Google Colab like environment, please add the following to your cell (instead of the above).

%run -m qai_hub_models.models.yolov3.demo

Run model on a cloud-hosted device

In addition to the demo, you can also run the model on a cloud-hosted Qualcomm® device. This script does the following:

  • Performance check on-device on a cloud-hosted device
  • Downloads compiled assets that can be deployed on-device for Android.
  • Accuracy check between PyTorch and on-device outputs.
python -m qai_hub_models.models.yolov3.export
Profiling Results
------------------------------------------------------------
Yolo-v3
Device                          : Samsung Galaxy S23 (13)
Runtime                         : TFLITE                 
Estimated inference time (ms)   : 25.2                   
Estimated peak memory usage (MB): [0, 14]                
Total # Ops                     : 162                    
Compute Unit(s)                 : NPU (162 ops)          

How does this work?

This export script leverages Qualcomm® AI Hub to optimize, validate, and deploy this model on-device. Lets go through each step below in detail:

Step 1: Compile model for on-device deployment

To compile a PyTorch model for on-device deployment, we first trace the model in memory using the jit.trace and then call the submit_compile_job API.

import torch

import qai_hub as hub
from qai_hub_models.models.yolov3 import Model

# Load the model
torch_model = Model.from_pretrained()

# Device
device = hub.Device("Samsung Galaxy S23")

# Trace model
input_shape = torch_model.get_input_spec()
sample_inputs = torch_model.sample_inputs()

pt_model = torch.jit.trace(torch_model, [torch.tensor(data[0]) for _, data in sample_inputs.items()])

# Compile model on a specific device
compile_job = hub.submit_compile_job(
    model=pt_model,
    device=device,
    input_specs=torch_model.get_input_spec(),
)

# Get target model to run on-device
target_model = compile_job.get_target_model()

Step 2: Performance profiling on cloud-hosted device

After compiling models from step 1. Models can be profiled model on-device using the target_model. Note that this scripts runs the model on a device automatically provisioned in the cloud. Once the job is submitted, you can navigate to a provided job URL to view a variety of on-device performance metrics.

profile_job = hub.submit_profile_job(
    model=target_model,
    device=device,
)
        

Step 3: Verify on-device accuracy

To verify the accuracy of the model on-device, you can run on-device inference on sample input data on the same cloud hosted device.

input_data = torch_model.sample_inputs()
inference_job = hub.submit_inference_job(
    model=target_model,
    device=device,
    inputs=input_data,
)
    on_device_output = inference_job.download_output_data()

With the output of the model, you can compute like PSNR, relative errors or spot check the output with expected output.

Note: This on-device profiling and inference requires access to Qualcomm® AI Hub. Sign up for access.

Run demo on a cloud-hosted device

You can also run the demo on-device.

python -m qai_hub_models.models.yolov3.demo --on-device

NOTE: If you want running in a Jupyter Notebook or Google Colab like environment, please add the following to your cell (instead of the above).

%run -m qai_hub_models.models.yolov3.demo -- --on-device

Deploying compiled model to Android

The models can be deployed using multiple runtimes:

  • TensorFlow Lite (.tflite export): This tutorial provides a guide to deploy the .tflite model in an Android application.

  • QNN (.so export ): This sample app provides instructions on how to use the .so shared library in an Android application.

View on Qualcomm® AI Hub

Get more details on Yolo-v3's performance across various devices here. Explore all available models on Qualcomm® AI Hub

License

  • The license for the original implementation of Yolo-v3 can be found here.
  • The license for the compiled assets for on-device deployment can be found here

References

Community