|
import numpy as np |
|
import cv2 |
|
from PIL import Image, ImageDraw, ImageOps |
|
import torch |
|
import matplotlib.pyplot as plt |
|
|
|
import apply_net |
|
from detectron2.data.detection_utils import convert_PIL_to_numpy,_apply_exif_orientation |
|
|
|
label_map = { |
|
"background": 0, |
|
"hat": 1, |
|
"hair": 2, |
|
"sunglasses": 3, |
|
"upper_clothes": 4, |
|
"skirt": 5, |
|
"pants": 6, |
|
"dress": 7, |
|
"belt": 8, |
|
"left_shoe": 9, |
|
"right_shoe": 10, |
|
"head": 11, |
|
"left_leg": 12, |
|
"right_leg": 13, |
|
"left_arm": 14, |
|
"right_arm": 15, |
|
"bag": 16, |
|
"scarf": 17, |
|
} |
|
|
|
dense_map = { |
|
"background" : [0], |
|
"torso" : [1,2], |
|
"right_hand" : [3], |
|
"left_hand" : [4], |
|
"left_foot" : [5], |
|
"right_foot" : [6], |
|
"upper_leg_right" : [7,9], |
|
"upper_leg_left" : [8,10], |
|
"lower_leg_right" : [11,13], |
|
"lower_leg_left" : [12,14], |
|
"upper_arm_left" : [15,17], |
|
"upper_arm_right" : [16,18], |
|
"lower_arm_left" : [19,21], |
|
"lower_arm_right" : [20,22], |
|
"head" : [23,24] |
|
} |
|
|
|
def extend_arm_mask(wrist, elbow, scale): |
|
wrist = elbow + scale * (wrist - elbow) |
|
return wrist |
|
|
|
def hole_fill(img): |
|
img = np.pad(img[1:-1, 1:-1], pad_width = 1, mode = 'constant', constant_values=0) |
|
img_copy = img.copy() |
|
mask = np.zeros((img.shape[0] + 2, img.shape[1] + 2), dtype=np.uint8) |
|
|
|
cv2.floodFill(img, mask, (0, 0), 255) |
|
img_inverse = cv2.bitwise_not(img) |
|
dst = cv2.bitwise_or(img_copy, img_inverse) |
|
return dst |
|
|
|
def refine_mask(mask): |
|
contours, hierarchy = cv2.findContours(mask.astype(np.uint8), |
|
cv2.RETR_CCOMP, cv2.CHAIN_APPROX_TC89_L1) |
|
area = [] |
|
for j in range(len(contours)): |
|
a_d = cv2.contourArea(contours[j], True) |
|
area.append(abs(a_d)) |
|
refine_mask = np.zeros_like(mask).astype(np.uint8) |
|
if len(area) != 0: |
|
i = area.index(max(area)) |
|
cv2.drawContours(refine_mask, contours, i, color=255, thickness=-1) |
|
|
|
return refine_mask |
|
|
|
def get_mask_location_new(category, model_parse: Image.Image, keypoint: dict, width=384,height=512, dense_pose = None): |
|
|
|
if category != 'lower_body_shoes' and category != 'lower_body_boots' and category != 'full_body' and category != 'dresses' and category != 'upper_clothes' and category != 'lower_body_pants' and category != 'lower_body_skirts': |
|
raise ValueError("Category not found") |
|
|
|
|
|
|
|
if category == 'lower_body_shoes': |
|
dense_mask = np.zeros((height, width)) |
|
dense_mask += (dense_pose == 5).astype(np.float32) + \ |
|
(dense_pose == 6).astype(np.float32) |
|
|
|
dense_mask = cv2.dilate(dense_mask, np.ones((5, 5), np.uint16), iterations=5) |
|
|
|
mask = Image.fromarray(dense_mask.astype(np.uint8) * 255) |
|
mask_gray = Image.fromarray(dense_mask.astype(np.uint8) * 127) |
|
|
|
return mask, mask_gray, dense_mask |
|
|
|
|
|
if category == 'lower_body_boots': |
|
dense_mask = np.zeros((height, width)) |
|
|
|
dense_mask += (dense_pose == 5).astype(np.float32) + \ |
|
(dense_pose == 6).astype(np.float32) + \ |
|
(dense_pose == 11).astype(np.float32) + \ |
|
(dense_pose == 12).astype(np.float32) + \ |
|
(dense_pose == 13).astype(np.float32) + \ |
|
(dense_pose == 14).astype(np.float32) |
|
|
|
dense_mask = cv2.dilate(dense_mask, np.ones((5, 5), np.uint16), iterations=5) |
|
|
|
mask = Image.fromarray(dense_mask.astype(np.uint8) * 255) |
|
mask_gray = Image.fromarray(dense_mask.astype(np.uint8) * 127) |
|
|
|
return mask, mask_gray, dense_mask |
|
|
|
|
|
im_parse = model_parse.resize((width, height), Image.NEAREST) |
|
parse_array = np.array(im_parse) |
|
|
|
arm_width = 40 |
|
|
|
parse_head = (parse_array == 1).astype(np.float32) + \ |
|
(parse_array == 3).astype(np.float32) + \ |
|
(parse_array == 11).astype(np.float32) |
|
|
|
parser_mask_fixed = (parse_array == label_map["left_shoe"]).astype(np.float32) + \ |
|
(parse_array == label_map["right_shoe"]).astype(np.float32) + \ |
|
(parse_array == label_map["hat"]).astype(np.float32) + \ |
|
(parse_array == label_map["sunglasses"]).astype(np.float32) + \ |
|
(parse_array == label_map["bag"]).astype(np.float32) |
|
|
|
parser_mask_changeable = (parse_array == label_map["background"]).astype(np.float32) |
|
|
|
arms_left = (parse_array == 14).astype(np.float32) |
|
arms_right = (parse_array == 15).astype(np.float32) |
|
arms = arms_left + arms_right |
|
|
|
if category == 'dresses' or category == 'full_body': |
|
parse_mask = (parse_array == 7).astype(np.float32) + \ |
|
(parse_array == 4).astype(np.float32) + \ |
|
(parse_array == 5).astype(np.float32) + \ |
|
(parse_array == 6).astype(np.float32) |
|
|
|
parser_mask_changeable += np.logical_and(parse_array, np.logical_not(parser_mask_fixed)) |
|
|
|
elif category == 'upper_clothes' : |
|
parse_mask = (parse_array == 4).astype(np.float32) |
|
parser_mask_fixed_lower_cloth = (parse_array == label_map["skirt"]).astype(np.float32) + \ |
|
(parse_array == label_map["pants"]).astype(np.float32) |
|
|
|
parser_mask_changeable += np.logical_and(parse_array, np.logical_not(parser_mask_fixed)) |
|
elif category == 'lower_body_pants' or category == 'lower_body_skirts': |
|
parse_mask = (parse_array == 6).astype(np.float32) + \ |
|
(parse_array == 12).astype(np.float32) + \ |
|
(parse_array == 13).astype(np.float32) + \ |
|
(parse_array == 5).astype(np.float32) |
|
parser_mask_fixed += (parse_array == label_map["upper_clothes"]).astype(np.float32) + \ |
|
(parse_array == 14).astype(np.float32) + \ |
|
(parse_array == 15).astype(np.float32) |
|
parser_mask_changeable += np.logical_and(parse_array, np.logical_not(parser_mask_fixed)) |
|
else: |
|
raise NotImplementedError |
|
|
|
|
|
pose_data = keypoint["pose_keypoints_2d"] |
|
pose_data = np.array(pose_data) |
|
pose_data = pose_data.reshape((-1, 2)) |
|
|
|
im_arms_left = Image.new('L', (width, height)) |
|
im_arms_right = Image.new('L', (width, height)) |
|
arms_draw_left = ImageDraw.Draw(im_arms_left) |
|
arms_draw_right = ImageDraw.Draw(im_arms_right) |
|
if category == 'dresses' or category == 'upper_clothes' or category == 'full_body': |
|
shoulder_right = np.multiply(tuple(pose_data[2][:2]), height / 512.0) |
|
shoulder_left = np.multiply(tuple(pose_data[5][:2]), height / 512.0) |
|
elbow_right = np.multiply(tuple(pose_data[3][:2]), height / 512.0) |
|
elbow_left = np.multiply(tuple(pose_data[6][:2]), height / 512.0) |
|
wrist_right = np.multiply(tuple(pose_data[4][:2]), height / 512.0) |
|
wrist_left = np.multiply(tuple(pose_data[7][:2]), height / 512.0) |
|
ARM_LINE_WIDTH = int(arm_width / 512 * height) |
|
size_left = [shoulder_left[0] - ARM_LINE_WIDTH // 2, shoulder_left[1] - ARM_LINE_WIDTH // 2, shoulder_left[0] + ARM_LINE_WIDTH // 2, shoulder_left[1] + ARM_LINE_WIDTH // 2] |
|
size_right = [shoulder_right[0] - ARM_LINE_WIDTH // 2, shoulder_right[1] - ARM_LINE_WIDTH // 2, shoulder_right[0] + ARM_LINE_WIDTH // 2, |
|
shoulder_right[1] + ARM_LINE_WIDTH // 2] |
|
|
|
|
|
if wrist_right[0] <= 1. and wrist_right[1] <= 1.: |
|
im_arms_right = arms_right |
|
else: |
|
wrist_right = extend_arm_mask(wrist_right, elbow_right, 1.2) |
|
arms_draw_right.line(np.concatenate((shoulder_right, elbow_right, wrist_right)).astype(np.uint16).tolist(), 'white', ARM_LINE_WIDTH, 'curve') |
|
arms_draw_right.arc(size_right, 0, 360, 'white', ARM_LINE_WIDTH // 2) |
|
|
|
if wrist_left[0] <= 1. and wrist_left[1] <= 1.: |
|
im_arms_left = arms_left |
|
else: |
|
wrist_left = extend_arm_mask(wrist_left, elbow_left, 1.2) |
|
arms_draw_left.line (np.concatenate((wrist_left, elbow_left, shoulder_left)).astype(np.uint16).tolist(), 'white', ARM_LINE_WIDTH, 'curve') |
|
arms_draw_left.arc(size_left, 0, 360, 'white', ARM_LINE_WIDTH // 2) |
|
|
|
hands_left = np.logical_and(np.logical_not(im_arms_left), arms_left) |
|
hands_right = np.logical_and(np.logical_not(im_arms_right), arms_right) |
|
parser_mask_fixed += hands_left + hands_right |
|
|
|
parser_mask_fixed = np.logical_or(parser_mask_fixed, parse_head) |
|
parse_mask = cv2.dilate(parse_mask, np.ones((5, 5), np.uint16), iterations=5) |
|
if category == 'dresses' or category == 'upper_clothes' or category == 'full_body': |
|
neck_mask = (parse_array == 18).astype(np.float32) |
|
neck_mask = cv2.dilate(neck_mask, np.ones((5, 5), np.uint16), iterations=1) |
|
neck_mask = np.logical_and(neck_mask, np.logical_not(parse_head)) |
|
parse_mask = np.logical_or(parse_mask, neck_mask) |
|
arm_mask = cv2.dilate(np.logical_or(im_arms_left, im_arms_right).astype('float32'), np.ones((5, 5), np.uint16), iterations=4) |
|
parse_mask += np.logical_or(parse_mask, arm_mask) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
parse_mask = np.logical_and(parser_mask_changeable, np.logical_not(parse_mask)) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
hip_right = np.multiply(tuple(pose_data[8][:2]), height / 512.0) |
|
hip_left = np.multiply(tuple(pose_data[11][:2]), height / 512.0) |
|
knee_right = np.multiply(tuple(pose_data[9][:2]), height / 512.0) |
|
knee_left = np.multiply(tuple(pose_data[12][:2]), height / 512.0) |
|
ankle_right = np.multiply(tuple(pose_data[10][:2]), height / 512.0) |
|
ankle_left = np.multiply(tuple(pose_data[13][:2]), height / 512.0) |
|
|
|
|
|
mid_point_left = hip_left + (knee_left - hip_left) / 5 |
|
mid_point_right = hip_right + (knee_right - hip_right) / 5 |
|
|
|
extra_mask = Image.new('L', (width, height)) |
|
extra_draw = ImageDraw.Draw(extra_mask) |
|
|
|
|
|
|
|
if category == 'dresses' or category == 'lower_body_skirts' or category == 'lower_body_pants': |
|
|
|
|
|
if ankle_left[0] != 0 and ankle_right[0] != 0 and ankle_left[1] != 0 and ankle_right[1] != 0: |
|
extra_draw.line(np.concatenate((ankle_right, ankle_left)).astype(np.uint16).tolist(), 'white', 1, 'curve') |
|
extra_draw.line(np.concatenate((hip_right, knee_right, ankle_right)).astype(np.uint16).tolist(), 'white', arm_width+20, 'curve') |
|
extra_draw.line(np.concatenate((hip_left, knee_left, ankle_left)).astype(np.uint16).tolist(), 'white', arm_width+20, 'curve') |
|
extra_draw.line(np.concatenate((hip_right, hip_left)).astype(np.uint16).tolist(), 'white', 1, 'curve') |
|
extra_draw.line(np.concatenate((knee_right, knee_left)).astype(np.uint16).tolist(), 'white', 1, 'curve') |
|
|
|
elif knee_left[0] != 0 and knee_right[0] != 0 and knee_left[1] != 0 and knee_right[1] != 0: |
|
extra_draw.line(np.concatenate((hip_right, knee_right)).astype(np.uint16).tolist(), 'white', 1, 'curve') |
|
extra_draw.line(np.concatenate((hip_left, knee_left)).astype(np.uint16).tolist(), 'white', arm_width, 'curve') |
|
extra_draw.line(np.concatenate((hip_right, hip_left)).astype(np.uint16).tolist(), 'white', arm_width, 'curve') |
|
else: |
|
pass |
|
|
|
if category == 'lower_body_pants': |
|
extra_mask = hole_fill(np.array(extra_mask)) |
|
extra_mask = cv2.dilate(np.array(extra_mask), np.ones((5, 5), np.uint16), iterations=int((knee_right[1] - hip_right[1])/10)) |
|
|
|
dense = (dense_pose == 1).astype(np.float32) +\ |
|
(dense_pose == 2).astype(np.float32) +\ |
|
(dense_pose == 7).astype(np.float32) +\ |
|
(dense_pose == 8).astype(np.float32) +\ |
|
(dense_pose == 9).astype(np.float32) +\ |
|
(dense_pose == 10).astype(np.float32) |
|
extra_mask = np.logical_and(extra_mask, dense) |
|
extra_mask = cv2.dilate((extra_mask * 255).astype(np.uint8), np.ones((5, 5), np.uint16), iterations=5) |
|
extra_mask = Image.fromarray((extra_mask * 255).astype(np.uint8), 'L') |
|
|
|
|
|
if category == "upper_clothes": |
|
if knee_left[0] != 0 and knee_right[0] != 0 and knee_left[1] != 0 and knee_right[1] != 0: |
|
|
|
extra_draw.line(np.concatenate((hip_right, hip_left)).astype(np.uint16).tolist(), 'white', 1, 'curve') |
|
extra_draw.line(np.concatenate((mid_point_right, mid_point_left)).astype(np.uint16).tolist(), 'white', 1, 'curve') |
|
extra_draw.line(np.concatenate((hip_right, mid_point_right)).astype(np.uint16).tolist(), 'white', 40, 'curve') |
|
extra_draw.line(np.concatenate((hip_left, mid_point_left)).astype(np.uint16).tolist(), 'white', 40, 'curve') |
|
else: |
|
pass |
|
extra_mask = cv2.dilate(np.array(extra_mask), np.ones((5, 5), np.uint16), iterations=4) |
|
|
|
extra_mask = Image.fromarray(hole_fill(np.array(extra_mask))) |
|
|
|
extra_mask = ImageOps.invert(extra_mask) |
|
extra_mask.save("mask_mine.png") |
|
|
|
if category == 'lower_body_pants': |
|
parse_mask = np.logical_or(parse_mask, parser_mask_fixed) |
|
parse_mask = np.logical_and(parse_mask, extra_mask) |
|
else: |
|
parse_mask = np.logical_and(parse_mask, extra_mask) |
|
parse_mask = np.logical_or(parse_mask, parser_mask_fixed) |
|
|
|
|
|
parse_mask_img = Image.fromarray(parse_mask.astype(np.uint8) * 255) |
|
parse_mask_img.save("mask_all.png") |
|
|
|
inpaint_mask = 1 - parse_mask |
|
|
|
|
|
if dense_pose is not None: |
|
|
|
dense_mask = np.zeros((height, width)) |
|
dense_fixed = np.zeros((height, width)) |
|
|
|
dense_foot = (dense_pose == 5).astype(np.float32) + \ |
|
(dense_pose == 6).astype(np.float32) |
|
|
|
dense_hand = (dense_pose == 3).astype(np.float32) + \ |
|
(dense_pose == 4).astype(np.float32) |
|
|
|
dense_fixed = dense_foot + dense_hand |
|
|
|
|
|
up_clothes = (parse_array == 4).astype(np.float32) |
|
low_clothes = (parse_array == 6).astype(np.float32) + \ |
|
(parse_array == 5).astype(np.float32) +\ |
|
(parse_array == 7).astype(np.float32) |
|
up_clothes = cv2.dilate(up_clothes, np.ones((5, 5), np.uint16), iterations=3) |
|
low_clothes = cv2.dilate(low_clothes, np.ones((5, 5), np.uint16), iterations=3) |
|
|
|
dense_fixed = np.logical_and(dense_fixed, np.logical_not(up_clothes)) |
|
dense_fixed = np.logical_and(dense_fixed, np.logical_not(low_clothes)) |
|
dense_fixed = (dense_fixed).astype(np.float32) |
|
|
|
|
|
if category == 'upper_clothes' or category == 'full_body' or category == 'dresses': |
|
dense_mask += (dense_pose == 1).astype(np.float32) + \ |
|
(dense_pose == 2).astype(np.float32) + \ |
|
(dense_pose == 15).astype(np.float32) + \ |
|
(dense_pose == 16).astype(np.float32) + \ |
|
(dense_pose == 17).astype(np.float32) + \ |
|
(dense_pose == 18).astype(np.float32) + \ |
|
(dense_pose == 19).astype(np.float32) + \ |
|
(dense_pose == 20).astype(np.float32) + \ |
|
(dense_pose == 21).astype(np.float32) + \ |
|
(dense_pose == 22).astype(np.float32) |
|
if category == 'lower_body_pants' or category == 'lower_body_skirts' or category == 'full_body' or category == 'dresses': |
|
dense_mask += (dense_pose == 7).astype(np.float32) + \ |
|
(dense_pose == 8).astype(np.float32) + \ |
|
(dense_pose == 9).astype(np.float32) + \ |
|
(dense_pose == 10).astype(np.float32) + \ |
|
(dense_pose == 11).astype(np.float32) + \ |
|
(dense_pose == 12).astype(np.float32) + \ |
|
(dense_pose == 13).astype(np.float32) + \ |
|
(dense_pose == 14).astype(np.float32) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if category == 'lower_body_skirts' or category == 'dresses': |
|
|
|
extra_mask = ImageOps.invert(extra_mask) |
|
extra_mask = np.array(extra_mask) |
|
extra_mask = cv2.dilate(extra_mask, np.ones((5, 5), np.uint16), iterations=9) |
|
dense_mask = np.logical_or(dense_mask, extra_mask) |
|
dense_mask = dense_mask.astype(np.float32) |
|
|
|
if category == "lower_body_pants" : |
|
extra_dense_mask = cv2.dilate(dense_mask, np.ones((5, 5), np.uint16), iterations=5) |
|
backgroud_mask = (dense_pose == 0).astype(np.float32) |
|
extra_dense_mask = np.logical_and(extra_dense_mask, np.logical_not(backgroud_mask)) |
|
|
|
dense_mask = np.logical_or(dense_mask, extra_dense_mask) |
|
dense_mask = dense_mask.astype(np.float32) |
|
|
|
|
|
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (2 * 10 + 1, 2 * 10 + 1)) |
|
dense_mask = cv2.dilate(dense_mask, kernel, iterations=1) |
|
|
|
dense_mask_img = Image.fromarray(dense_mask.astype(np.uint8) * 255) |
|
dense_mask_img.save("mask_new.png") |
|
|
|
|
|
if category == 'upper_clothes': |
|
mid_y = max(mid_point_left[1], mid_point_right[1]) |
|
y_grid = np.arange(dense_mask.shape[0]).reshape(-1, 1) |
|
lower_half_mask = y_grid > mid_y |
|
lower_half_mask = np.tile(lower_half_mask, (1, dense_mask.shape[1])) |
|
dense_mask[lower_half_mask] = 0 |
|
|
|
inpaint_mask = np.logical_or(inpaint_mask, dense_mask) |
|
|
|
img = np.where(inpaint_mask, 255, 0) |
|
dst = hole_fill(img.astype(np.uint8)) |
|
|
|
|
|
|
|
|
|
|
|
dst = refine_mask(dst) |
|
inpaint_mask = dst / 255 * 1 |
|
|
|
inpaint_mask_img = Image.fromarray(inpaint_mask.astype(np.uint8) * 255) |
|
inpaint_mask_img.save("mask_inpaint.png") |
|
|
|
|
|
|
|
inpaint_mask = np.logical_and(inpaint_mask, np.logical_not(dense_fixed)) |
|
|
|
mask = Image.fromarray(inpaint_mask.astype(np.uint8) * 255) |
|
mask_gray = Image.fromarray(inpaint_mask.astype(np.uint8) * 127) |
|
|
|
return mask, mask_gray, inpaint_mask |
|
|
|
def merge_mask_image(image, mask): |
|
mask = mask.convert("L") |
|
white_image = Image.new("RGB", image.size, "white") |
|
inverted_mask = Image.eval(mask, lambda x: 255 - x) |
|
combined_image = Image.composite(image, white_image, inverted_mask) |
|
|
|
return combined_image |
|
|
|
|
|
def get_bbox_from_densepose(image, densepose_array, padding=0): |
|
body_pixels = np.column_stack(np.where(densepose_array > 0)) |
|
|
|
if body_pixels.size == 0: |
|
return None |
|
|
|
min_y, min_x = body_pixels.min(axis=0) |
|
max_y, max_x = body_pixels.max(axis=0) |
|
|
|
min_x = max(0, min_x - padding) |
|
min_y = max(0, min_y - padding) |
|
max_x = min(densepose_array.shape[1], max_x + padding) |
|
max_y = min(densepose_array.shape[0], max_y + padding) |
|
|
|
bbox = (min_x, min_y, max_x, max_y) |
|
|
|
mask = np.zeros_like(image) |
|
min_x, min_y, max_x, max_y = bbox |
|
mask[min_y:max_y, min_x:max_x, :] = 255 |
|
masked_image = np.where(mask == 255, image, 0) |
|
masked_image = Image.fromarray(masked_image) |
|
|
|
return masked_image |
|
|
|
|
|
|
|
import matplotlib.pyplot as plt |
|
from preprocess.openpose.run_openpose import OpenPose |
|
from preprocess.humanparsing.run_parsing import Parsing |
|
|
|
|
|
|
|
if __name__ == '__main__': |
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
openpose_model = OpenPose(0) |
|
openpose_model.preprocessor.body_estimation.model.to(device) |
|
|
|
model_image = Image.open('../model1.jpg').copy() |
|
model_image = model_image.resize((768, 1024)) |
|
|
|
human_img_arg = _apply_exif_orientation(model_image.resize((384,512))) |
|
human_img_arg = convert_PIL_to_numpy(human_img_arg, format="BGR") |
|
|
|
args = apply_net.create_argument_parser().parse_args(('show', './configs/densepose_rcnn_R_50_FPN_s1x.yaml', './ckpt/densepose/model_final_162be9.pkl', 'dp_segm', '-v', '--opts', 'MODEL.DEVICE', 'cuda')) |
|
dense_pose = args.func(args,human_img_arg) |
|
|
|
Image.fromarray(dense_pose[0][:,:,::-1]).resize((768,1024)).save("densepose.png") |
|
|
|
dense_pose = dense_pose[1] |
|
|
|
bbox_image = get_bbox_from_densepose(model_image.resize((384,512)), dense_pose, 15) |
|
bbox_image.save("zzz.png") |
|
|
|
|
|
keypoints = openpose_model(bbox_image) |
|
|
|
parsing_model = Parsing(0) |
|
model_parse, _ = parsing_model(model_image.resize((384,512))) |
|
model_parse.save("model_parse.png") |
|
|
|
cate = ['upper_clothes', 'lower_body_pants', 'lower_body_skirts', 'dresses', 'full_body', 'lower_body_shoes', 'lower_body_boots'] |
|
|
|
for category in cate: |
|
mask, mask_gray, mask_arr = get_mask_location_new(category, model_parse, keypoints, width=384, height=512, dense_pose = dense_pose) |
|
mask.resize((768, 1024)).save(f"mask_{category}.png") |
|
|
|
model_image = model_image.resize((384, 512)) |
|
|
|
|
|
model_image_end = merge_mask_image(model_image, mask) |
|
model_image_end.save(f"model_image_{category}.png") |
|
|