Модель ruT5-base была fine-tuned для задачи question answer, предназначенная для Russian текст.
Uses
from transformers import AutoTokenizer, T5ForConditionalGeneration
qa_checkpoint = 'r1char9/ruT5_q_a'
qa_model = T5ForConditionalGeneration.from_pretrained(qa_checkpoint)
qa_tokenizer = AutoTokenizer.from_pretrained(qa_checkpoint)
prompt='Нарисуй изображение Томаса Шелби'
def question_answering(prompt):
question = "Что нужно нарисовать?"
tokenized_sentence = qa_tokenizer(prompt, question, return_tensors='pt')
res = qa_model.generate(**tokenized_sentence)
decoded_res = qa_tokenizer.decode(res[0], skip_special_tokens=True)
return decoded_res
prompt = question_answering(prompt)
# 'изображение Томаса Шелби'
- Downloads last month
- 455
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.