|
--- |
|
license: mit |
|
pipeline_tag: robotics |
|
--- |
|
# Octo Base |
|
|
|
See https://github.com/octo-models/octo for instructions for using this model. |
|
|
|
Octo Base is trained with a window size of 2, predicting 7-dimensional actions 4 steps into the future using a diffusion policy. The model is a Transformer with 93M parameters (equivalent to a ViT-B). Images are tokenized by preprocessing with a lightweight convolutional encoder, then grouped into 16x16 patches. Language is tokenized by applying the T5 tokenizer, and then applying the T5-Base language encoder. |
|
|
|
Observations and tasks conform to the following spec: |
|
|
|
Observations: |
|
|
|
``` |
|
{ |
|
image_primary: ('batch', 'history_window', 256, 256, 3), |
|
image_wrist: ('batch', 'history_window', 128, 128, 3), |
|
} |
|
``` |
|
|
|
Tasks: |
|
``` |
|
{ |
|
image_primary: ('batch', 256, 256, 3), |
|
image_wrist: ('batch', 128, 128, 3), |
|
language_instruction: { |
|
attention_mask: ('batch', 16), |
|
input_ids: ('batch', 16), |
|
}, |
|
} |
|
``` |
|
|
|
At inference, you may pass in any subset of these observation and task keys, with a history window up to 2 timesteps. |
|
|
|
|
|
This model was trained on a mix of datasets from the Open X-Embodiment dataset. |
|
|
|
| Dataset | Proportion of batch | |
|
|------------------------------------------------------------|---------------------| |
|
| Fractal (Brohan et al, 2022) | 17.0\% | |
|
| Kuka (Kalashnikov et al, 2018) | 17.0\% | |
|
| Bridge (Walke et al, 2023) | 17.0\% | |
|
| BC-Z (Jang et al, 2022) | 9.1\% | |
|
| Stanford Hydra Dataset (Belkhale et al, 2023) | 6.0\% | |
|
| Language Table~ (Lynch et al, 2023) | 5.9\% | |
|
| Taco Play (Rosete-Beas et al, 2022, Mees et al., 2023) | 3.6\% | |
|
| Furniture Bench Dataset (Heo et al, 2023) | 3.3\% | |
|
| UTAustin Mutex (Shah et al, 2023) | 3.0\% | |
|
| Austin Sailor Dataset (Nasiriany et al, 2022) | 2.9\% | |
|
| Roboturk (Mandlekar et al, 2018) | 2.8\% | |
|
| Toto (Zhou et al, 2023) | 2.4\% | |
|
| Austin Sirius Dataset (Liu et al, 2023) | 2.3\% | |
|
| Berkeley Autolab UR5 (Chen et al) | 1.5\% | |
|
| IAMLab CMU Pickup Insert (Saxena et al, 2023) | 1.2\% | |
|
| Viola (Zhu et al, 2023) | 1.2\% | |
|
| Berkeley Fanuc Manipulation (Zhu et al, 2023) | 1.0\% | |
|
| NYU Franka Play Dataset (Cui et al, 2022) | 0.9\% | |
|
| UCSD Kitchen Dataset (Ge Yan and Wang, 2023) | <0.1\% | |
|
| Jaco Play (Dass et al, 2023) | 0.6\% | |
|
| Berkeley Cable Routing (Luo et al, 2023) | 0.3\% | |
|
| Austin Buds Dataset (Zhu et al, 2022) | 0.3\% | |
|
| CMU Stretch (Mendonca et al, 2023) | 0.2\% | |
|
| NYU Door Opening (Pari et al, 2021) | 0.1\% | |
|
| DLR EDAN Shared Control (Quere et al, 2020) | 0.1\% | |