This model was trained with Neural-Cherche. You can find details on how to fine-tune it in the Neural-Cherche repository.
This model is an all-mpnet-base-v2
as a ColBERT.
pip install neural-cherche
Retriever
from neural_cherche import models, retrieve
import torch
device = "cuda" if torch.cuda.is_available() else "cpu"
batch_size = 32
documents = [
{"id": 0, "document": "Food"},
{"id": 1, "document": "Sports"},
{"id": 2, "document": "Cinema"},
]
queries = ["Food", "Sports", "Cinema"]
model = models.ColBERT(
model_name_or_path="raphaelsty/neural-cherche-colbert",
device=device,
)
retriever = retrieve.ColBERT(
key="id",
on=["document"],
model=model,
)
documents_embeddings = retriever.encode_documents(
documents=documents,
batch_size=batch_size,
)
retriever = retriever.add(
documents_embeddings=documents_embeddings,
)
queries_embeddings = retriever.encode_queries(
queries=queries,
batch_size=batch_size,
)
scores = retriever(
queries_embeddings=queries_embeddings,
batch_size=batch_size,
k=3,
)
scores
Ranker
from neural_cherche import models, rank, retrieve
import torch
device = "cuda" if torch.cuda.is_available() else "cpu"
batch_size = 32
documents = [
{"id": "doc1", "title": "Paris", "text": "Paris is the capital of France."},
{"id": "doc2", "title": "Montreal", "text": "Montreal is the largest city in Quebec."},
{"id": "doc3", "title": "Bordeaux", "text": "Bordeaux in Southwestern France."},
]
queries = [
"What is the capital of France?",
"What is the largest city in Quebec?",
"Where is Bordeaux?",
]
retriever = retrieve.TfIdf(
key="id",
on=["title", "text"],
)
model = models.ColBERT(
model_name_or_path="raphaelsty/neural-cherche-colbert",
device=device,
)
ranker = rank.ColBERT(
key="id",
on=["title", "text"],
model=model
)
retriever_documents_embeddings = retriever.encode_documents(
documents=documents,
)
retriever.add(
documents_embeddings=retriever_documents_embeddings,
)
ranker_documents_embeddings = ranker.encode_documents(
documents=documents,
batch_size=batch_size,
)
retriever_queries_embeddings = retriever.encode_queries(
queries=queries,
)
ranker_queries_embeddings = ranker.encode_queries(
queries=queries,
batch_size=batch_size,
)
candidates = retriever(
queries_embeddings=retriever_queries_embeddings,
k=1000,
)
scores = ranker(
documents=candidates,
queries_embeddings=ranker_queries_embeddings,
documents_embeddings=ranker_documents_embeddings,
k=100,
batch_size=32,
)
scores
- Downloads last month
- 22
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.