roberta-large-ner-qlorafinetune-runs
This model is a fine-tuned version of FacebookAI/xlm-roberta-large on the conll2002 dataset. It achieves the following results on the evaluation set:
- Loss: 0.0853
- Precision: 0.8767
- Recall: 0.8819
- F1: 0.8793
- Accuracy: 0.9814
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0004
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Use paged_adamw_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- training_steps: 1820
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
0.9933 | 0.0766 | 20 | 0.4461 | 0.1132 | 0.0565 | 0.0754 | 0.8691 |
0.2822 | 0.1533 | 40 | 0.2098 | 0.5212 | 0.6337 | 0.5720 | 0.9451 |
0.146 | 0.2299 | 60 | 0.1251 | 0.7357 | 0.7652 | 0.7502 | 0.9657 |
0.0986 | 0.3065 | 80 | 0.1222 | 0.7928 | 0.8134 | 0.8030 | 0.9720 |
0.1087 | 0.3831 | 100 | 0.1080 | 0.7738 | 0.7953 | 0.7844 | 0.9714 |
0.0874 | 0.4598 | 120 | 0.0974 | 0.8118 | 0.8205 | 0.8161 | 0.9742 |
0.0876 | 0.5364 | 140 | 0.0791 | 0.8374 | 0.8532 | 0.8452 | 0.9791 |
0.0909 | 0.6130 | 160 | 0.0831 | 0.8333 | 0.8486 | 0.8408 | 0.9779 |
0.0835 | 0.6897 | 180 | 0.0802 | 0.8452 | 0.8479 | 0.8465 | 0.9773 |
0.0706 | 0.7663 | 200 | 0.0879 | 0.8234 | 0.8359 | 0.8296 | 0.9757 |
0.0634 | 0.8429 | 220 | 0.0812 | 0.8368 | 0.8504 | 0.8435 | 0.9782 |
0.0548 | 0.9195 | 240 | 0.0918 | 0.8067 | 0.8235 | 0.8150 | 0.9741 |
0.0602 | 0.9962 | 260 | 0.0903 | 0.8328 | 0.8458 | 0.8393 | 0.9762 |
0.0528 | 1.0728 | 280 | 0.0878 | 0.8125 | 0.8456 | 0.8287 | 0.9760 |
0.0513 | 1.1494 | 300 | 0.0991 | 0.8269 | 0.8332 | 0.8300 | 0.9754 |
0.0565 | 1.2261 | 320 | 0.0805 | 0.8575 | 0.8683 | 0.8629 | 0.9788 |
0.0514 | 1.3027 | 340 | 0.0864 | 0.8104 | 0.8359 | 0.8230 | 0.9751 |
0.0499 | 1.3793 | 360 | 0.1011 | 0.8012 | 0.8194 | 0.8102 | 0.9740 |
0.0585 | 1.4559 | 380 | 0.0945 | 0.8179 | 0.8258 | 0.8219 | 0.9739 |
0.0489 | 1.5326 | 400 | 0.0887 | 0.8177 | 0.8389 | 0.8282 | 0.9755 |
0.0534 | 1.6092 | 420 | 0.0747 | 0.8283 | 0.8523 | 0.8401 | 0.9784 |
0.0612 | 1.6858 | 440 | 0.0743 | 0.8336 | 0.8532 | 0.8433 | 0.9775 |
0.0531 | 1.7625 | 460 | 0.0722 | 0.8632 | 0.8699 | 0.8666 | 0.9802 |
0.0453 | 1.8391 | 480 | 0.0752 | 0.8346 | 0.8502 | 0.8423 | 0.9776 |
0.0504 | 1.9157 | 500 | 0.0754 | 0.8373 | 0.8562 | 0.8466 | 0.9783 |
0.0468 | 1.9923 | 520 | 0.0734 | 0.8534 | 0.8612 | 0.8573 | 0.9794 |
0.0573 | 2.0690 | 540 | 0.0728 | 0.8412 | 0.8653 | 0.8531 | 0.9785 |
0.0344 | 2.1456 | 560 | 0.0741 | 0.8549 | 0.8690 | 0.8619 | 0.9794 |
0.0303 | 2.2222 | 580 | 0.0767 | 0.8428 | 0.8658 | 0.8541 | 0.9783 |
0.0421 | 2.2989 | 600 | 0.0753 | 0.8370 | 0.8587 | 0.8477 | 0.9786 |
0.0335 | 2.3755 | 620 | 0.0762 | 0.8523 | 0.8594 | 0.8558 | 0.9788 |
0.0376 | 2.4521 | 640 | 0.0735 | 0.8511 | 0.8732 | 0.8620 | 0.9797 |
0.0366 | 2.5287 | 660 | 0.0764 | 0.8647 | 0.8619 | 0.8633 | 0.9792 |
0.0351 | 2.6054 | 680 | 0.0771 | 0.8711 | 0.8713 | 0.8712 | 0.9795 |
0.0389 | 2.6820 | 700 | 0.0734 | 0.8563 | 0.8640 | 0.8601 | 0.9788 |
0.037 | 2.7586 | 720 | 0.0708 | 0.8475 | 0.8660 | 0.8567 | 0.9804 |
0.0434 | 2.8352 | 740 | 0.0719 | 0.8441 | 0.8587 | 0.8513 | 0.9783 |
0.0399 | 2.9119 | 760 | 0.0681 | 0.8572 | 0.8773 | 0.8671 | 0.9807 |
0.0381 | 2.9885 | 780 | 0.0679 | 0.8615 | 0.8759 | 0.8686 | 0.9809 |
0.0343 | 3.0651 | 800 | 0.0680 | 0.8593 | 0.8844 | 0.8717 | 0.9816 |
0.0283 | 3.1418 | 820 | 0.0708 | 0.8760 | 0.8780 | 0.8770 | 0.9812 |
0.0286 | 3.2184 | 840 | 0.0757 | 0.8688 | 0.8796 | 0.8742 | 0.9802 |
0.0279 | 3.2950 | 860 | 0.0721 | 0.875 | 0.8798 | 0.8774 | 0.9810 |
0.0274 | 3.3716 | 880 | 0.0717 | 0.8651 | 0.8766 | 0.8708 | 0.9796 |
0.0296 | 3.4483 | 900 | 0.0697 | 0.8558 | 0.8782 | 0.8669 | 0.9796 |
0.0355 | 3.5249 | 920 | 0.0624 | 0.8741 | 0.8856 | 0.8798 | 0.9820 |
0.0223 | 3.6015 | 940 | 0.0751 | 0.8693 | 0.8803 | 0.8748 | 0.9814 |
0.0265 | 3.6782 | 960 | 0.0785 | 0.8694 | 0.875 | 0.8722 | 0.9798 |
0.0261 | 3.7548 | 980 | 0.0701 | 0.8768 | 0.8830 | 0.8799 | 0.9808 |
0.0326 | 3.8314 | 1000 | 0.0693 | 0.8708 | 0.8842 | 0.8774 | 0.9820 |
0.028 | 3.9080 | 1020 | 0.0719 | 0.8579 | 0.8752 | 0.8665 | 0.9795 |
0.032 | 3.9847 | 1040 | 0.0726 | 0.8766 | 0.8801 | 0.8783 | 0.9809 |
0.0176 | 4.0613 | 1060 | 0.0766 | 0.8753 | 0.8821 | 0.8787 | 0.9809 |
0.0218 | 4.1379 | 1080 | 0.0808 | 0.8681 | 0.8805 | 0.8743 | 0.9810 |
0.0163 | 4.2146 | 1100 | 0.0833 | 0.8682 | 0.875 | 0.8716 | 0.9803 |
0.0201 | 4.2912 | 1120 | 0.0882 | 0.8702 | 0.8752 | 0.8727 | 0.9802 |
0.0193 | 4.3678 | 1140 | 0.0838 | 0.8678 | 0.8778 | 0.8727 | 0.9801 |
0.023 | 4.4444 | 1160 | 0.0855 | 0.8648 | 0.8761 | 0.8704 | 0.9802 |
0.0241 | 4.5211 | 1180 | 0.0793 | 0.8585 | 0.8768 | 0.8676 | 0.9795 |
0.0224 | 4.5977 | 1200 | 0.0806 | 0.8792 | 0.8863 | 0.8827 | 0.9814 |
0.0263 | 4.6743 | 1220 | 0.0737 | 0.8674 | 0.8775 | 0.8724 | 0.9816 |
0.0266 | 4.7510 | 1240 | 0.0824 | 0.8501 | 0.8706 | 0.8603 | 0.9794 |
0.0212 | 4.8276 | 1260 | 0.0770 | 0.8657 | 0.8709 | 0.8683 | 0.9811 |
0.0228 | 4.9042 | 1280 | 0.0724 | 0.8673 | 0.8771 | 0.8722 | 0.9810 |
0.0216 | 4.9808 | 1300 | 0.0703 | 0.8747 | 0.8842 | 0.8794 | 0.9817 |
0.0155 | 5.0575 | 1320 | 0.0782 | 0.8799 | 0.8904 | 0.8851 | 0.9824 |
0.015 | 5.1341 | 1340 | 0.0792 | 0.8822 | 0.8842 | 0.8832 | 0.9822 |
0.0159 | 5.2107 | 1360 | 0.0787 | 0.8771 | 0.8872 | 0.8821 | 0.9818 |
0.0182 | 5.2874 | 1380 | 0.0766 | 0.8767 | 0.8821 | 0.8794 | 0.9816 |
0.0147 | 5.3640 | 1400 | 0.0756 | 0.8753 | 0.8778 | 0.8765 | 0.9814 |
0.0182 | 5.4406 | 1420 | 0.0813 | 0.8755 | 0.8794 | 0.8775 | 0.9809 |
0.0163 | 5.5172 | 1440 | 0.0822 | 0.8823 | 0.8835 | 0.8829 | 0.9815 |
0.0172 | 5.5939 | 1460 | 0.0819 | 0.8767 | 0.8810 | 0.8789 | 0.9813 |
0.015 | 5.6705 | 1480 | 0.0777 | 0.8714 | 0.8796 | 0.8755 | 0.9811 |
0.0108 | 5.7471 | 1500 | 0.0801 | 0.8801 | 0.8835 | 0.8818 | 0.9814 |
0.0169 | 5.8238 | 1520 | 0.0798 | 0.8793 | 0.8853 | 0.8823 | 0.9818 |
0.016 | 5.9004 | 1540 | 0.0832 | 0.8723 | 0.8771 | 0.8747 | 0.9810 |
0.0128 | 5.9770 | 1560 | 0.0829 | 0.8730 | 0.8780 | 0.8755 | 0.9809 |
0.0101 | 6.0536 | 1580 | 0.0834 | 0.8711 | 0.8773 | 0.8742 | 0.9808 |
0.0124 | 6.1303 | 1600 | 0.0831 | 0.8710 | 0.8796 | 0.8753 | 0.9808 |
0.012 | 6.2069 | 1620 | 0.0855 | 0.8702 | 0.8761 | 0.8731 | 0.9805 |
0.0124 | 6.2835 | 1640 | 0.0822 | 0.8719 | 0.8805 | 0.8762 | 0.9811 |
0.0126 | 6.3602 | 1660 | 0.0823 | 0.8762 | 0.8830 | 0.8796 | 0.9812 |
0.0123 | 6.4368 | 1680 | 0.0814 | 0.8769 | 0.8853 | 0.8811 | 0.9812 |
0.0098 | 6.5134 | 1700 | 0.0827 | 0.8732 | 0.8828 | 0.8780 | 0.9813 |
0.0126 | 6.5900 | 1720 | 0.0820 | 0.8741 | 0.8810 | 0.8775 | 0.9810 |
0.0108 | 6.6667 | 1740 | 0.0840 | 0.8778 | 0.8830 | 0.8804 | 0.9815 |
0.0118 | 6.7433 | 1760 | 0.0852 | 0.8757 | 0.8824 | 0.8790 | 0.9814 |
0.0103 | 6.8199 | 1780 | 0.0854 | 0.8773 | 0.8824 | 0.8798 | 0.9814 |
0.0103 | 6.8966 | 1800 | 0.0854 | 0.8782 | 0.8828 | 0.8805 | 0.9815 |
0.0081 | 6.9732 | 1820 | 0.0853 | 0.8767 | 0.8819 | 0.8793 | 0.9814 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.3
- Pytorch 2.5.1
- Datasets 3.1.0
- Tokenizers 0.20.3
- Downloads last month
- 13
Model tree for raulgdp/roberta-large-ner-qlorafinetune-runs
Base model
FacebookAI/xlm-roberta-large