raulgdp's picture
Update README.md
6af401e verified
metadata
license: mit
base_model: xlnet-base-cased
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - f1
  - precision
  - recall
model-index:
  - name: xlnet-base-cased-HU-comple
    results: []
pipeline_tag: text-classification

xlnet-base-cased-HU-comple

This model is a fine-tuned version of xlnet-base-cased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9240
  • Accuracy: 0.8050
  • F1: 0.7619
  • Precision: 0.7568
  • Recall: 0.7671

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
0.6952 1.0 90 0.6760 0.5933 0.0 0.0 0.0
0.694 2.0 180 0.6782 0.5933 0.0 0.0 0.0
0.6856 3.0 270 0.6781 0.5933 0.0 0.0 0.0
0.6868 4.0 360 0.7132 0.5933 0.0 0.0 0.0
0.6353 5.0 450 0.6486 0.6657 0.6685 0.5602 0.8288
0.5003 6.0 540 0.5151 0.7799 0.7189 0.7481 0.6918
0.3585 7.0 630 0.5237 0.7660 0.7290 0.6890 0.7740
0.2167 8.0 720 0.7817 0.7883 0.7226 0.7734 0.6781
0.1643 9.0 810 0.8763 0.7939 0.7597 0.7222 0.8014
0.135 10.0 900 0.9240 0.8050 0.7619 0.7568 0.7671

Framework versions

  • Transformers 4.43.0.dev0
  • Pytorch 2.0.1+cu117
  • Datasets 2.19.1
  • Tokenizers 0.19.1