Edit model card

rawsh/multi-qa-MiniLM-BERT-Tiny-distill-L-2_H-128_A-cos-v1

This is a sentence-transformers model: It maps sentences & paragraphs to a 128 dimensional dense vector space and can be used for tasks like clustering or semantic search.

Based on nreimers/BERT-Tiny_L-2_H-128_A-2

Teacher: multi-qa-MiniLM-L6-cos-v1

Terrible performance but it's 5MB

2023-06-05 15:28:46 - EmbeddingSimilarityEvaluator: Evaluating the model on sts-dev dataset after epoch 0:                                                       
2023-06-05 15:28:47 - Cosine-Similarity :       Pearson: 0.7336 Spearman: 0.7582                                                                                 
2023-06-05 15:28:47 - Manhattan-Distance:       Pearson: 0.7960 Spearman: 0.7976                                                                                 
2023-06-05 15:28:47 - Euclidean-Distance:       Pearson: 0.7968 Spearman: 0.7984                                                                                 
2023-06-05 15:28:47 - Dot-Product-Similarity:   Pearson: 0.5599 Spearman: 0.5410                                                                                 
2023-06-05 15:28:48 - MSE evaluation (lower = better) on  dataset after epoch 0:                                                                                 
2023-06-05 15:28:48 - MSE (*100):       0.152902

Usage (Sentence-Transformers)

Using this model becomes easy when you have sentence-transformers installed:

pip install -U sentence-transformers

Then you can use the model like this:

from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]

model = SentenceTransformer('{MODEL_NAME}')
embeddings = model.encode(sentences)
print(embeddings)

Usage (HuggingFace Transformers)

Without sentence-transformers, you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.

from transformers import AutoTokenizer, AutoModel
import torch


#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
    token_embeddings = model_output[0] #First element of model_output contains all token embeddings
    input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
    return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)


# Sentences we want sentence embeddings for
sentences = ['This is an example sentence', 'Each sentence is converted']

# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}')
model = AutoModel.from_pretrained('{MODEL_NAME}')

# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')

# Compute token embeddings
with torch.no_grad():
    model_output = model(**encoded_input)

# Perform pooling. In this case, mean pooling.
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])

print("Sentence embeddings:")
print(sentence_embeddings)

Evaluation Results

For an automated evaluation of this model, see the Sentence Embeddings Benchmark: https://seb.sbert.net

Training

The model was trained with the parameters:

DataLoader:

torch.utils.data.dataloader.DataLoader of length 141164 with parameters:

{'batch_size': 64, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}

Loss:

sentence_transformers.losses.MSELoss.MSELoss

Parameters of the fit()-Method:

{
    "epochs": 1,
    "evaluation_steps": 5000,
    "evaluator": "sentence_transformers.evaluation.SequentialEvaluator.SequentialEvaluator",
    "max_grad_norm": 1,
    "optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
    "optimizer_params": {
        "eps": 1e-06,
        "lr": 0.0001
    },
    "scheduler": "WarmupLinear",
    "steps_per_epoch": null,
    "warmup_steps": 1000,
    "weight_decay": 0.01
}

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 128, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)

Citing & Authors

Downloads last month
32
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.