|
# SciFive Pubmed Large |
|
|
|
## Introduction |
|
Paper: [SciFive: a text-to-text transformer model for biomedical literature](https://arxiv.org/abs/2106.03598) |
|
|
|
Authors: _Long N. Phan, James T. Anibal, Hieu Tran, Shaurya Chanana, Erol Bahadroglu, Alec Peltekian, Grégoire Altan-Bonnet_ |
|
|
|
## How to use |
|
For more details, do check out [our Github repo](https://github.com/justinphan3110/SciFive). |
|
```python |
|
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("razent/SciFive-large-Pubmed") |
|
model = AutoModelForSeq2SeqLM.from_pretrained("razent/SciFive-large-Pubmed") |
|
|
|
sentence = "Identification of APC2 , a homologue of the adenomatous polyposis coli tumour suppressor ." |
|
text = "ncbi_ner: " + sentence + " </s>" |
|
|
|
encoding = tokenizer.encode_plus(text, pad_to_max_length=True, return_tensors="pt") |
|
input_ids, attention_masks = encoding["input_ids"].to("cuda"), encoding["attention_mask"].to("cuda") |
|
|
|
outputs = model.generate( |
|
input_ids=input_ids, attention_mask=attention_masks, |
|
max_length=256, |
|
early_stopping=True |
|
) |
|
|
|
for output in outputs: |
|
line = tokenizer.decode(output, skip_special_tokens=True, clean_up_tokenization_spaces=True) |
|
print(line) |
|
``` |