Added binary file handing to inference endpoint and made return value a dictionary
#1
by
nicklorch
- opened
- handler.py +15 -8
handler.py
CHANGED
@@ -14,18 +14,25 @@ class EndpointHandler():
|
|
14 |
self.processor = CLIPProcessor.from_pretrained("rbanfield/clip-vit-large-patch14")
|
15 |
|
16 |
def __call__(self, data):
|
17 |
-
|
18 |
-
text_input =
|
19 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
if text_input:
|
22 |
processor = self.processor(text=text_input, return_tensors="pt", padding=True).to(device)
|
23 |
with torch.no_grad():
|
24 |
-
return self.text_model(**processor).pooler_output.tolist()
|
25 |
-
elif
|
26 |
-
image = Image.open(
|
27 |
processor = self.processor(images=image, return_tensors="pt").to(device)
|
28 |
with torch.no_grad():
|
29 |
-
return self.image_model(**processor).image_embeds.tolist()
|
30 |
else:
|
31 |
-
return None
|
|
|
14 |
self.processor = CLIPProcessor.from_pretrained("rbanfield/clip-vit-large-patch14")
|
15 |
|
16 |
def __call__(self, data):
|
17 |
+
|
18 |
+
text_input = None
|
19 |
+
if isinstance(data, dict):
|
20 |
+
inputs = data.pop("inputs", None)
|
21 |
+
text_input = inputs.get('text',None)
|
22 |
+
image_data = BytesIO(base64.b64decode(inputs['image'])) if 'image' in inputs else None
|
23 |
+
else:
|
24 |
+
# assuming its an image sent via binary
|
25 |
+
image_data = BytesIO(data)
|
26 |
+
|
27 |
|
28 |
if text_input:
|
29 |
processor = self.processor(text=text_input, return_tensors="pt", padding=True).to(device)
|
30 |
with torch.no_grad():
|
31 |
+
return {'embeddings':self.text_model(**processor).pooler_output.tolist()[0]}
|
32 |
+
elif image_data:
|
33 |
+
image = Image.open(image_data)
|
34 |
processor = self.processor(images=image, return_tensors="pt").to(device)
|
35 |
with torch.no_grad():
|
36 |
+
return {'embeddings':self.image_model(**processor).image_embeds.tolist()[0]}
|
37 |
else:
|
38 |
+
return {'embeddings':None}
|