metadata
base_model: BAAI/bge-base-en-v1.5
datasets: []
language:
- en
library_name: sentence-transformers
license: apache-2.0
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:6300
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: >-
As of December 31, 2023, deferred revenues for unsatisfied performance
obligations consisted of $769 million related to Hilton Honors that will
be recognized as revenue over approximately the next two years.
sentences:
- How many shares of common stock were issued in both 2022 and 2023?
- >-
What is the projected timeline for recognizing revenue from deferred
revenues related to Hilton Honors as of December 31, 2023?
- >-
What acquisitions did CVS Health Corporation complete in 2023 to enhance
their care delivery strategy?
- source_sentence: >-
If a good or service does not qualify as distinct, it is combined with the
other non-distinct goods or services within the arrangement and these
combined goods or services are treated as a single performance obligation
for accounting purposes. The arrangement's transaction price is then
allocated to each performance obligation based on the relative standalone
selling price of each performance obligation.
sentences:
- >-
What does the summary table indicate about the company's activities at
the end of 2023?
- >-
What governs the treatment of goods or services that are not distinct
within a contractual arrangement?
- >-
What is the basis for the Company to determine the Standalone Selling
Price (SSP) for each distinct performance obligation in contracts with
multiple performance obligations?
- source_sentence: >-
As of January 2023, the maximum daily borrowing capacity under the
commercial paper program was approximately $2.75 billion.
sentences:
- >-
What is the maximum daily borrowing capacity under the commercial paper
program as of January 2023?
- When does the Company's fiscal year end?
- How much cash did acquisition activities use in 2023?
- source_sentence: >-
Federal Home Loan Bank borrowings had an interest rate of 4.59% in 2022,
which increased to 5.14% in 2023.
sentences:
- >-
By what percentage did the company's capital expenditures increase in
fiscal 2023 compared to fiscal 2022?
- >-
What is the significance of Note 13 in the context of legal proceedings
described in the Annual Report on Form 10-K?
- >-
How much did the Federal Home Loan Bank borrowings increase in terms of
interest rates from 2022 to 2023?
- source_sentence: >-
The design of the Annual Report, with the consolidated financial
statements placed immediately after Part IV, enhances the integration of
financial data by maintaining a coherent structure.
sentences:
- >-
How does the structure of the Annual Report on Form 10-K facilitate the
integration of the consolidated financial statements?
- Where can one find the Glossary of Terms and Acronyms in Item 8?
- >-
What part of the annual report contains the consolidated financial
statements and accompanying notes?
model-index:
- name: BGE base Financial Matryoshka
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 768
type: dim_768
metrics:
- type: cosine_accuracy@1
value: 0.6957142857142857
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8171428571428572
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8628571428571429
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6957142857142857
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2723809523809524
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.17257142857142854
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.08999999999999998
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.6957142857142857
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8171428571428572
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8628571428571429
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.7971144469297426
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7641831065759639
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7681728985040082
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 512
type: dim_512
metrics:
- type: cosine_accuracy@1
value: 0.6942857142857143
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.81
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8514285714285714
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6942857142857143
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.27
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.17028571428571426
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.6942857142857143
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.81
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8514285714285714
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.7951260604161544
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7617998866213151
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7658003405075238
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 256
type: dim_256
metrics:
- type: cosine_accuracy@1
value: 0.7014285714285714
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.7971428571428572
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.85
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.8885714285714286
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.7014285714285714
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.26571428571428574
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.16999999999999998
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.08885714285714284
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.7014285714285714
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.7971428571428572
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.85
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.8885714285714286
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.793266992460996
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7629580498866213
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7678096436855835
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 128
type: dim_128
metrics:
- type: cosine_accuracy@1
value: 0.6957142857142857
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8014285714285714
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8357142857142857
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.8842857142857142
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6957142857142857
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2671428571428571
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.16714285714285712
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.08842857142857141
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.6957142857142857
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8014285714285714
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8357142857142857
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.8842857142857142
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.787378246207931
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7566984126984126
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7613545312565108
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 64
type: dim_64
metrics:
- type: cosine_accuracy@1
value: 0.6571428571428571
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.7871428571428571
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8285714285714286
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.8757142857142857
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6571428571428571
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2623809523809524
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.1657142857142857
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.08757142857142856
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.6571428571428571
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.7871428571428571
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8285714285714286
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.8757142857142857
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.7655516319615892
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7303951247165531
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7349875161463472
name: Cosine Map@100
BGE base Financial Matryoshka
This is a sentence-transformers model finetuned from BAAI/bge-base-en-v1.5. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-base-en-v1.5
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
- Language: en
- License: apache-2.0
Model Sources
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("rbhatia46/bge-base-financial-nvidia-matryoshka")
sentences = [
'The design of the Annual Report, with the consolidated financial statements placed immediately after Part IV, enhances the integration of financial data by maintaining a coherent structure.',
'How does the structure of the Annual Report on Form 10-K facilitate the integration of the consolidated financial statements?',
'Where can one find the Glossary of Terms and Acronyms in Item 8?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
Evaluation
Metrics
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.6957 |
cosine_accuracy@3 |
0.8171 |
cosine_accuracy@5 |
0.8629 |
cosine_accuracy@10 |
0.9 |
cosine_precision@1 |
0.6957 |
cosine_precision@3 |
0.2724 |
cosine_precision@5 |
0.1726 |
cosine_precision@10 |
0.09 |
cosine_recall@1 |
0.6957 |
cosine_recall@3 |
0.8171 |
cosine_recall@5 |
0.8629 |
cosine_recall@10 |
0.9 |
cosine_ndcg@10 |
0.7971 |
cosine_mrr@10 |
0.7642 |
cosine_map@100 |
0.7682 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.6943 |
cosine_accuracy@3 |
0.81 |
cosine_accuracy@5 |
0.8514 |
cosine_accuracy@10 |
0.9 |
cosine_precision@1 |
0.6943 |
cosine_precision@3 |
0.27 |
cosine_precision@5 |
0.1703 |
cosine_precision@10 |
0.09 |
cosine_recall@1 |
0.6943 |
cosine_recall@3 |
0.81 |
cosine_recall@5 |
0.8514 |
cosine_recall@10 |
0.9 |
cosine_ndcg@10 |
0.7951 |
cosine_mrr@10 |
0.7618 |
cosine_map@100 |
0.7658 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.7014 |
cosine_accuracy@3 |
0.7971 |
cosine_accuracy@5 |
0.85 |
cosine_accuracy@10 |
0.8886 |
cosine_precision@1 |
0.7014 |
cosine_precision@3 |
0.2657 |
cosine_precision@5 |
0.17 |
cosine_precision@10 |
0.0889 |
cosine_recall@1 |
0.7014 |
cosine_recall@3 |
0.7971 |
cosine_recall@5 |
0.85 |
cosine_recall@10 |
0.8886 |
cosine_ndcg@10 |
0.7933 |
cosine_mrr@10 |
0.763 |
cosine_map@100 |
0.7678 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.6957 |
cosine_accuracy@3 |
0.8014 |
cosine_accuracy@5 |
0.8357 |
cosine_accuracy@10 |
0.8843 |
cosine_precision@1 |
0.6957 |
cosine_precision@3 |
0.2671 |
cosine_precision@5 |
0.1671 |
cosine_precision@10 |
0.0884 |
cosine_recall@1 |
0.6957 |
cosine_recall@3 |
0.8014 |
cosine_recall@5 |
0.8357 |
cosine_recall@10 |
0.8843 |
cosine_ndcg@10 |
0.7874 |
cosine_mrr@10 |
0.7567 |
cosine_map@100 |
0.7614 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.6571 |
cosine_accuracy@3 |
0.7871 |
cosine_accuracy@5 |
0.8286 |
cosine_accuracy@10 |
0.8757 |
cosine_precision@1 |
0.6571 |
cosine_precision@3 |
0.2624 |
cosine_precision@5 |
0.1657 |
cosine_precision@10 |
0.0876 |
cosine_recall@1 |
0.6571 |
cosine_recall@3 |
0.7871 |
cosine_recall@5 |
0.8286 |
cosine_recall@10 |
0.8757 |
cosine_ndcg@10 |
0.7656 |
cosine_mrr@10 |
0.7304 |
cosine_map@100 |
0.735 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 6,300 training samples
- Columns:
positive
and anchor
- Approximate statistics based on the first 1000 samples:
|
positive |
anchor |
type |
string |
string |
details |
- min: 6 tokens
- mean: 45.53 tokens
- max: 222 tokens
|
- min: 8 tokens
- mean: 20.3 tokens
- max: 45 tokens
|
- Samples:
positive |
anchor |
Acquisition activity used cash of $765 million in 2023, primarily related to a Beauty acquisition. |
How much cash did acquisition activities use in 2023? |
In a financial report, Part IV Item 15 includes Exhibits and Financial Statement Schedules as mentioned. |
What content can be expected under Part IV Item 15 in a financial report? |
we had more than 8.3 million fiber consumer wireline broadband customers, adding 1.1 million during the year. |
How many fiber consumer wireline broadband customers did the company have at the end of the year? |
- Loss:
MatryoshkaLoss
with these parameters:{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epoch
per_device_train_batch_size
: 32
per_device_eval_batch_size
: 16
gradient_accumulation_steps
: 16
learning_rate
: 2e-05
num_train_epochs
: 4
lr_scheduler_type
: cosine
warmup_ratio
: 0.1
bf16
: True
tf32
: True
load_best_model_at_end
: True
optim
: adamw_torch_fused
batch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: False
do_predict
: False
eval_strategy
: epoch
prediction_loss_only
: True
per_device_train_batch_size
: 32
per_device_eval_batch_size
: 16
per_gpu_train_batch_size
: None
per_gpu_eval_batch_size
: None
gradient_accumulation_steps
: 16
eval_accumulation_steps
: None
learning_rate
: 2e-05
weight_decay
: 0.0
adam_beta1
: 0.9
adam_beta2
: 0.999
adam_epsilon
: 1e-08
max_grad_norm
: 1.0
num_train_epochs
: 4
max_steps
: -1
lr_scheduler_type
: cosine
lr_scheduler_kwargs
: {}
warmup_ratio
: 0.1
warmup_steps
: 0
log_level
: passive
log_level_replica
: warning
log_on_each_node
: True
logging_nan_inf_filter
: True
save_safetensors
: True
save_on_each_node
: False
save_only_model
: False
restore_callback_states_from_checkpoint
: False
no_cuda
: False
use_cpu
: False
use_mps_device
: False
seed
: 42
data_seed
: None
jit_mode_eval
: False
use_ipex
: False
bf16
: True
fp16
: False
fp16_opt_level
: O1
half_precision_backend
: auto
bf16_full_eval
: False
fp16_full_eval
: False
tf32
: True
local_rank
: 0
ddp_backend
: None
tpu_num_cores
: None
tpu_metrics_debug
: False
debug
: []
dataloader_drop_last
: False
dataloader_num_workers
: 0
dataloader_prefetch_factor
: None
past_index
: -1
disable_tqdm
: False
remove_unused_columns
: True
label_names
: None
load_best_model_at_end
: True
ignore_data_skip
: False
fsdp
: []
fsdp_min_num_params
: 0
fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
fsdp_transformer_layer_cls_to_wrap
: None
accelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
deepspeed
: None
label_smoothing_factor
: 0.0
optim
: adamw_torch_fused
optim_args
: None
adafactor
: False
group_by_length
: False
length_column_name
: length
ddp_find_unused_parameters
: None
ddp_bucket_cap_mb
: None
ddp_broadcast_buffers
: False
dataloader_pin_memory
: True
dataloader_persistent_workers
: False
skip_memory_metrics
: True
use_legacy_prediction_loop
: False
push_to_hub
: False
resume_from_checkpoint
: None
hub_model_id
: None
hub_strategy
: every_save
hub_private_repo
: False
hub_always_push
: False
gradient_checkpointing
: False
gradient_checkpointing_kwargs
: None
include_inputs_for_metrics
: False
eval_do_concat_batches
: True
fp16_backend
: auto
push_to_hub_model_id
: None
push_to_hub_organization
: None
mp_parameters
:
auto_find_batch_size
: False
full_determinism
: False
torchdynamo
: None
ray_scope
: last
ddp_timeout
: 1800
torch_compile
: False
torch_compile_backend
: None
torch_compile_mode
: None
dispatch_batches
: None
split_batches
: None
include_tokens_per_second
: False
include_num_input_tokens_seen
: False
neftune_noise_alpha
: None
optim_target_modules
: None
batch_eval_metrics
: False
batch_sampler
: no_duplicates
multi_dataset_batch_sampler
: proportional
Training Logs
Epoch |
Step |
Training Loss |
dim_128_cosine_map@100 |
dim_256_cosine_map@100 |
dim_512_cosine_map@100 |
dim_64_cosine_map@100 |
dim_768_cosine_map@100 |
0.8122 |
10 |
1.5751 |
- |
- |
- |
- |
- |
0.9746 |
12 |
- |
- |
- |
- |
- |
0.7580 |
0.8122 |
10 |
0.6362 |
- |
- |
- |
- |
- |
0.9746 |
12 |
- |
0.7503 |
0.7576 |
0.7653 |
0.7282 |
0.7638 |
1.6244 |
20 |
0.4426 |
- |
- |
- |
- |
- |
1.9492 |
24 |
- |
0.7544 |
0.7662 |
0.7640 |
0.7311 |
0.7676 |
2.4365 |
30 |
0.3217 |
- |
- |
- |
- |
- |
2.9239 |
36 |
- |
0.7608 |
0.7684 |
0.7662 |
0.7341 |
0.7686 |
3.2487 |
40 |
0.2761 |
- |
- |
- |
- |
- |
3.8985 |
48 |
- |
0.7614 |
0.7678 |
0.7658 |
0.735 |
0.7682 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.6
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.1.2+cu121
- Accelerate: 0.31.0
- Datasets: 2.19.1
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}