Tagset
- O
- B-CITATION
- I-CITATION
- B-LAW
- I-LAW
Training
- The model was trained with the following hyperparamters:
- batch size: 64
- learning_rate: 0.00001
- number of training epochs: 50 (actually trained: 23)
- early stopping patience: 5
Predict scores
metric | score |
---|---|
de_predict/_CITATION_f1 | 97.93 |
de_predict/_CITATION_precision | 98.53 |
de_predict/_CITATION_recall | 97.34 |
de_predict/_LAW_f1 | 92.08 |
de_predict/_LAW_precision | 85.99 |
de_predict/_LAW_recall | 99.1 |
de_predict/_accuracy_normalized | 98.8 |
de_predict/_macro-f1 | 95.04 |
de_predict/_macro-precision | 98.22 |
de_predict/_macro-recall | 92.32 |
de_predict/_micro-f1 | 94.06 |
de_predict/_micro-precision | 98.49 |
de_predict/_micro-recall | 90.01 |
de_predict/_steps_per_second | 54.9 |
de_predict/_weighted-f1 | 93.97 |
de_predict/_weighted-precision | 98.55 |
de_predict/_weighted-recall | 90.01 |
fr_predict/_CITATION_f1 | 95.55 |
fr_predict/_CITATION_precision | 96.85 |
fr_predict/_CITATION_recall | 94.28 |
fr_predict/_LAW_f1 | 91.01 |
fr_predict/_LAW_precision | 83.67 |
fr_predict/_LAW_recall | 99.76 |
fr_predict/_accuracy_normalized | 98.31 |
fr_predict/_macro-f1 | 93.3 |
fr_predict/_macro-precision | 97.02 |
fr_predict/_macro-recall | 90.3 |
fr_predict/_micro-f1 | 92.06 |
fr_predict/_micro-precision | 98.42 |
fr_predict/_micro-recall | 86.47 |
fr_predict/_steps_per_second | 59.3 |
fr_predict/_weighted-f1 | 91.99 |
fr_predict/_weighted-precision | 98.62 |
fr_predict/_weighted-recall | 86.47 |
it_predict/_CITATION_f1 | 97.04 |
it_predict/_CITATION_precision | 97.7 |
it_predict/_CITATION_recall | 96.39 |
it_predict/_LAW_f1 | 90.99 |
it_predict/_LAW_precision | 84.23 |
it_predict/_LAW_recall | 98.94 |
it_predict/_accuracy_normalized | 98.92 |
it_predict/_macro-f1 | 94.13 |
it_predict/_macro-precision | 97.66 |
it_predict/_macro-recall | 91.2 |
it_predict/_micro-f1 | 93.11 |
it_predict/_micro-precision | 98.03 |
it_predict/_micro-recall | 88.67 |
it_predict/_steps_per_second | 56.3 |
it_predict/_weighted-f1 | 93 |
it_predict/_weighted-precision | 98.13 |
it_predict/_weighted-recall | 88.67 |
predict/_CITATION_f1 | 97.36 |
predict/_CITATION_precision | 98.11 |
predict/_CITATION_recall | 96.62 |
predict/_LAW_f1 | 91.68 |
predict/_LAW_precision | 85.15 |
predict/_LAW_recall | 99.3 |
predict/_accuracy_normalized | 98.68 |
predict/_macro-f1 | 94.56 |
predict/_macro-precision | 97.96 |
predict/_macro-recall | 91.7 |
predict/_micro-f1 | 93.43 |
predict/_micro-precision | 98.45 |
predict/_micro-recall | 88.91 |
predict/_steps_per_second | 55.7 |
predict/_weighted-f1 | 93.34 |
predict/_weighted-precision | 98.54 |
predict/_weighted-recall | 88.91 |
predict_samples | 28218 |
- Downloads last month
- 236
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.