training / README.md
rdomanski's picture
Model save
376022d verified
metadata
license: apache-2.0
base_model: openai/whisper-medium
tags:
  - generated_from_trainer
datasets:
  - audiofolder
metrics:
  - wer
model-index:
  - name: training
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: audiofolder
          type: audiofolder
          config: default
          split: test
          args: default
        metrics:
          - name: Wer
            type: wer
            value: 24.53398954167948

training

This model is a fine-tuned version of openai/whisper-medium on the audiofolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3025
  • Wer: 24.5340

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 4000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.3282 0.81 1000 0.3106 42.8176
0.1619 1.62 2000 0.2932 27.0624
0.0531 2.43 3000 0.2985 25.3645
0.0208 3.24 4000 0.3025 24.5340

Framework versions

  • Transformers 4.39.0.dev0
  • Pytorch 2.2.1+cu118
  • Datasets 2.17.1
  • Tokenizers 0.15.2