reannayang's picture
update model card README.md
65e7c6e
|
raw
history blame
3.42 kB
---
license: apache-2.0
tags:
- vision
- image-segmentation
- generated_from_trainer
model-index:
- name: segformer-b0-pavement
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# segformer-b0-pavement
This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the reannayang/FL_pavement dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4165
- Mean Iou: 0.6318
- Mean Accuracy: 0.9700
- Overall Accuracy: 0.9738
- Per Category Iou: [0.0, 0.964166382973358, 0.9809231860559384, 0.0, 0.9295139919583345, 0.9164463823409184]
- Per Category Accuracy: [nan, 0.9643001261034048, 0.9983497924348297, nan, 0.995031342981772, 0.9223532638507954]
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Per Category Iou | Per Category Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------:|
| 1.0651 | 10.0 | 20 | 1.3005 | 0.5967 | 0.9512 | 0.9534 | [0.0, 0.9462421185372005, 0.9681701711239586, 0.0, 0.7994398965962947, 0.8662896799897185] | [nan, 0.9462421185372005, 0.9693809143181291, nan, 0.9648149753011526, 0.9243828853538124] |
| 0.5732 | 20.0 | 40 | 0.6626 | 0.6287 | 0.9702 | 0.9760 | [0.0, 0.975246652572234, 0.985446932366533, 0.0, 0.9010974339804011, 0.9103918683964157] | [nan, 0.9772635561160151, 0.9952040842637238, nan, 0.9748678395008233, 0.9334887547997806] |
| 0.6987 | 30.0 | 60 | 0.4319 | 0.6317 | 0.9705 | 0.9758 | [0.0, 0.9709705045212967, 0.9798115236227942, 0.0, 0.9255918522130127, 0.9139245313729214] | [nan, 0.9722194199243379, 0.9986205296134905, nan, 0.9871161568015715, 0.924026330224904] |
| 0.6915 | 40.0 | 80 | 0.4382 | 0.6237 | 0.9634 | 0.9692 | [0.0, 0.9611727616645649, 0.9725125142706595, 0.0, 0.9147983251179308, 0.8937433316006894] | [nan, 0.9611727616645649, 0.9993811721630611, nan, 0.9971690210012422, 0.896023038946791] |
| 0.4373 | 50.0 | 100 | 0.4165 | 0.6318 | 0.9700 | 0.9738 | [0.0, 0.964166382973358, 0.9809231860559384, 0.0, 0.9295139919583345, 0.9164463823409184] | [nan, 0.9643001261034048, 0.9983497924348297, nan, 0.995031342981772, 0.9223532638507954] |
### Framework versions
- Transformers 4.19.2
- Pytorch 1.7.1
- Datasets 2.2.1
- Tokenizers 0.12.1