|
SYSTEM = 'Você é assistente de IA chamado GemBode.\n - O GemBode é um modelo de língua conversacional projetado para ser prestativo, honesto e inofensivo.\n - O GemBode pode entender e se comunicar fluentemente na linguagem escolhida pelo usuário, em especial o Português e o Inglês' |
|
accumulative_counts = 16 |
|
alpaca_en = dict( |
|
dataset=dict( |
|
data_files= |
|
'/petrobr/parceirosbr/home/rafael.rodrigues/.cache/huggingface/hub/datasets--recogna-nlp--ultra-alpaca-ptbr/snapshots/e69900d074177d370a911096fc30bdf407eff666/train.json', |
|
path='json', |
|
type='datasets.load_dataset'), |
|
dataset_map_fn='xtuner.dataset.map_fns.ultracabrita_map_fn', |
|
max_length=2048, |
|
pack_to_max_length=True, |
|
remove_unused_columns=True, |
|
shuffle_before_pack=True, |
|
template_map_fn=dict( |
|
template='xtuner.utils.PROMPT_TEMPLATE.default', |
|
type='xtuner.dataset.map_fns.template_map_fn_factory'), |
|
tokenizer=dict( |
|
padding_side='right', |
|
pretrained_model_name_or_path= |
|
'/petrobr/parceirosbr/home/rafael.rodrigues/.cache/huggingface/hub/models--google--gemma-7b/snapshots/c0be85690a0385f5990b14826ff530f199a5cdcf', |
|
trust_remote_code=True, |
|
type='transformers.AutoTokenizer.from_pretrained'), |
|
type='xtuner.dataset.process_hf_dataset', |
|
use_varlen_attn=False) |
|
alpaca_en_path = '/petrobr/parceirosbr/home/rafael.rodrigues/.cache/huggingface/hub/datasets--recogna-nlp--ultra-alpaca-ptbr/snapshots/e69900d074177d370a911096fc30bdf407eff666/train.json' |
|
batch_size = 2 |
|
betas = ( |
|
0.9, |
|
0.999, |
|
) |
|
custom_hooks = [ |
|
dict( |
|
tokenizer=dict( |
|
padding_side='right', |
|
pretrained_model_name_or_path= |
|
'/petrobr/parceirosbr/home/rafael.rodrigues/.cache/huggingface/hub/models--google--gemma-7b/snapshots/c0be85690a0385f5990b14826ff530f199a5cdcf', |
|
trust_remote_code=True, |
|
type='transformers.AutoTokenizer.from_pretrained'), |
|
type='xtuner.engine.hooks.DatasetInfoHook'), |
|
dict( |
|
evaluation_inputs=[ |
|
'O que é um bode?', |
|
'Qual a capital da França?', |
|
'Você pode me explicar o Teorema de Pitágoras com um exemplo, por favor?', |
|
'Olá, tudo bem? Estou procurando livros de ficção científica para ler, você teria sugestões para mim?', |
|
'Resolva a equação de segundo grau x² - x - 30 = 0', |
|
'Escreva um código em python para calcular x^y usando divisão e conquista.', |
|
], |
|
every_n_iters=500, |
|
prompt_template='xtuner.utils.PROMPT_TEMPLATE.default', |
|
system= |
|
'Você é assistente de IA chamado GemBode.\n - O GemBode é um modelo de língua conversacional projetado para ser prestativo, honesto e inofensivo.\n - O GemBode pode entender e se comunicar fluentemente na linguagem escolhida pelo usuário, em especial o Português e o Inglês', |
|
tokenizer=dict( |
|
padding_side='right', |
|
pretrained_model_name_or_path= |
|
'/petrobr/parceirosbr/home/rafael.rodrigues/.cache/huggingface/hub/models--google--gemma-7b/snapshots/c0be85690a0385f5990b14826ff530f199a5cdcf', |
|
trust_remote_code=True, |
|
type='transformers.AutoTokenizer.from_pretrained'), |
|
type='xtuner.engine.hooks.EvaluateChatHook'), |
|
] |
|
dataloader_num_workers = 0 |
|
default_hooks = dict( |
|
checkpoint=dict( |
|
by_epoch=False, |
|
interval=500, |
|
max_keep_ckpts=2, |
|
type='mmengine.hooks.CheckpointHook'), |
|
logger=dict( |
|
interval=10, |
|
log_metric_by_epoch=False, |
|
type='mmengine.hooks.LoggerHook'), |
|
param_scheduler=dict(type='mmengine.hooks.ParamSchedulerHook'), |
|
sampler_seed=dict(type='mmengine.hooks.DistSamplerSeedHook'), |
|
timer=dict(type='mmengine.hooks.IterTimerHook')) |
|
env_cfg = dict( |
|
cudnn_benchmark=False, |
|
dist_cfg=dict(backend='nccl'), |
|
mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0)) |
|
evaluation_freq = 500 |
|
evaluation_inputs = [ |
|
'O que é um bode?', |
|
'Qual a capital da França?', |
|
'Você pode me explicar o Teorema de Pitágoras com um exemplo, por favor?', |
|
'Olá, tudo bem? Estou procurando livros de ficção científica para ler, você teria sugestões para mim?', |
|
'Resolva a equação de segundo grau x² - x - 30 = 0', |
|
'Escreva um código em python para calcular x^y usando divisão e conquista.', |
|
] |
|
launcher = 'pytorch' |
|
load_from = None |
|
log_level = 'INFO' |
|
log_processor = dict(by_epoch=False) |
|
lr = 0.0002 |
|
max_epochs = 1 |
|
max_length = 2048 |
|
max_norm = 1 |
|
model = dict( |
|
llm=dict( |
|
pretrained_model_name_or_path= |
|
'/petrobr/parceirosbr/home/rafael.rodrigues/.cache/huggingface/hub/models--google--gemma-7b/snapshots/c0be85690a0385f5990b14826ff530f199a5cdcf', |
|
quantization_config=dict( |
|
bnb_4bit_compute_dtype='torch.float16', |
|
bnb_4bit_quant_type='nf4', |
|
bnb_4bit_use_double_quant=True, |
|
llm_int8_has_fp16_weight=False, |
|
llm_int8_threshold=6.0, |
|
load_in_4bit=True, |
|
load_in_8bit=False, |
|
type='transformers.BitsAndBytesConfig'), |
|
torch_dtype='torch.float16', |
|
trust_remote_code=True, |
|
type='transformers.AutoModelForCausalLM.from_pretrained'), |
|
lora=dict( |
|
bias='none', |
|
lora_alpha=16, |
|
lora_dropout=0.1, |
|
r=64, |
|
task_type='CAUSAL_LM', |
|
type='peft.LoraConfig'), |
|
type='xtuner.model.SupervisedFinetune', |
|
use_varlen_attn=False) |
|
optim_type = 'torch.optim.AdamW' |
|
optim_wrapper = dict( |
|
optimizer=dict( |
|
betas=( |
|
0.9, |
|
0.999, |
|
), |
|
lr=0.0002, |
|
type='torch.optim.AdamW', |
|
weight_decay=0), |
|
type='DeepSpeedOptimWrapper') |
|
pack_to_max_length = True |
|
param_scheduler = [ |
|
dict( |
|
begin=0, |
|
by_epoch=True, |
|
convert_to_iter_based=True, |
|
end=0.03, |
|
start_factor=1e-05, |
|
type='mmengine.optim.LinearLR'), |
|
dict( |
|
begin=0.03, |
|
by_epoch=True, |
|
convert_to_iter_based=True, |
|
end=1, |
|
eta_min=0.0, |
|
type='mmengine.optim.CosineAnnealingLR'), |
|
] |
|
pretrained_model_name_or_path = '/petrobr/parceirosbr/home/rafael.rodrigues/.cache/huggingface/hub/models--google--gemma-7b/snapshots/c0be85690a0385f5990b14826ff530f199a5cdcf' |
|
prompt_template = 'xtuner.utils.PROMPT_TEMPLATE.default' |
|
randomness = dict(deterministic=False, seed=None) |
|
resume = False |
|
runner_type = 'FlexibleRunner' |
|
save_steps = 500 |
|
save_total_limit = 2 |
|
strategy = dict( |
|
config=dict( |
|
bf16=dict(enabled=False), |
|
fp16=dict(enabled=True, initial_scale_power=16), |
|
gradient_accumulation_steps='auto', |
|
gradient_clipping='auto', |
|
train_micro_batch_size_per_gpu='auto', |
|
zero_allow_untested_optimizer=True, |
|
zero_force_ds_cpu_optimizer=False, |
|
zero_optimization=dict(overlap_comm=True, stage=2)), |
|
exclude_frozen_parameters=True, |
|
gradient_accumulation_steps=16, |
|
gradient_clipping=1, |
|
sequence_parallel_size=1, |
|
train_micro_batch_size_per_gpu=2, |
|
type='xtuner.engine.DeepSpeedStrategy') |
|
tokenizer = dict( |
|
padding_side='right', |
|
pretrained_model_name_or_path= |
|
'/petrobr/parceirosbr/home/rafael.rodrigues/.cache/huggingface/hub/models--google--gemma-7b/snapshots/c0be85690a0385f5990b14826ff530f199a5cdcf', |
|
trust_remote_code=True, |
|
type='transformers.AutoTokenizer.from_pretrained') |
|
train_cfg = dict(max_epochs=1, type='xtuner.engine.runner.TrainLoop') |
|
train_dataloader = dict( |
|
batch_size=2, |
|
collate_fn=dict( |
|
type='xtuner.dataset.collate_fns.default_collate_fn', |
|
use_varlen_attn=False), |
|
dataset=dict( |
|
dataset=dict( |
|
data_files= |
|
'/petrobr/parceirosbr/home/rafael.rodrigues/.cache/huggingface/hub/datasets--recogna-nlp--ultra-alpaca-ptbr/snapshots/e69900d074177d370a911096fc30bdf407eff666/train.json', |
|
path='json', |
|
type='datasets.load_dataset'), |
|
dataset_map_fn='xtuner.dataset.map_fns.ultracabrita_map_fn', |
|
max_length=2048, |
|
pack_to_max_length=True, |
|
remove_unused_columns=True, |
|
shuffle_before_pack=True, |
|
template_map_fn=dict( |
|
template='xtuner.utils.PROMPT_TEMPLATE.default', |
|
type='xtuner.dataset.map_fns.template_map_fn_factory'), |
|
tokenizer=dict( |
|
padding_side='right', |
|
pretrained_model_name_or_path= |
|
'/petrobr/parceirosbr/home/rafael.rodrigues/.cache/huggingface/hub/models--google--gemma-7b/snapshots/c0be85690a0385f5990b14826ff530f199a5cdcf', |
|
trust_remote_code=True, |
|
type='transformers.AutoTokenizer.from_pretrained'), |
|
type='xtuner.dataset.process_hf_dataset', |
|
use_varlen_attn=False), |
|
num_workers=0, |
|
sampler=dict(shuffle=True, type='mmengine.dataset.DefaultSampler')) |
|
use_varlen_attn = False |
|
visualizer = None |
|
warmup_ratio = 0.03 |
|
weight_decay = 0 |
|
work_dir = './work_dirs/gemma_7b_qlora_ultraalpaca' |
|
|