recogna's picture
Update README.md
286755a verified
metadata
license: apache-2.0
library_name: transformers
pipeline_tag: text-generation

internlm2-chat-1_8b-ultracabrita

ChatBode Logo

O InternLm-ChatBode é um modelo de linguagem ajustado para o idioma português, desenvolvido a partir do modelo InternLM2. Este modelo foi refinado através do processo de fine-tuning utilizando o dataset UltraAlpaca.

Características Principais

Exemplo de uso

A seguir um exemplo de código de como carregar e utilizar o modelo:

import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("recogna-nlp/internlm2-chat-1_8b-ultracabrita", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("recogna-nlp/internlm2-chat-1_8b-ultracabrita", torch_dtype=torch.float16, trust_remote_code=True).cuda()
model = model.eval()
response, history = model.chat(tokenizer, "Olá", history=[])
print(response)
response, history = model.chat(tokenizer, "O que é o Teorema de Pitágoras? Me dê um exemplo", history=history)
print(response)

As respostas podem ser geradas via stream utilizando o método stream_chat:

import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_path = "recogna-nlp/internlm2-chat-1_8b-ultracabrita"
model = AutoModelForCausalLM.from_pretrained(model_path, torch_dtype=torch.float16, trust_remote_code=True).cuda()
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)

model = model.eval()
length = 0
for response, history in model.stream_chat(tokenizer, "Olá", history=[]):
    print(response[length:], flush=True, end="")
    length = len(response)