Update model card
#2
by
kiankaydee
- opened
README.md
CHANGED
@@ -3,35 +3,30 @@ library_name: transformers
|
|
3 |
tags: []
|
4 |
---
|
5 |
|
6 |
-
# Model Card for
|
7 |
-
|
8 |
-
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
|
|
|
|
|
10 |
|
11 |
|
12 |
## Model Details
|
13 |
|
14 |
### Model Description
|
15 |
|
16 |
-
|
17 |
-
|
18 |
-
|
|
|
19 |
|
20 |
-
- **Developed by:**
|
21 |
-
- **
|
22 |
-
- **
|
23 |
-
- **Model type:** [More Information Needed]
|
24 |
-
- **Language(s) (NLP):** [More Information Needed]
|
25 |
- **License:** [More Information Needed]
|
26 |
-
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
-
|
28 |
-
### Model Sources [optional]
|
29 |
|
30 |
-
|
31 |
|
32 |
-
- **Repository:** [
|
33 |
-
- **Paper
|
34 |
-
- **Demo [optional]:** [More Information Needed]
|
35 |
|
36 |
## Uses
|
37 |
|
|
|
3 |
tags: []
|
4 |
---
|
5 |
|
6 |
+
# Model Card for Phenom CA-MAE-S/16
|
|
|
|
|
7 |
|
8 |
+
Channel-agnostic image encoding model designed for microscopy image featurization.
|
9 |
+
The model uses a vision transformer backbone with channelwise cross-attention over patch tokens to create contextualized representations separately for each channel.
|
10 |
|
11 |
|
12 |
## Model Details
|
13 |
|
14 |
### Model Description
|
15 |
|
16 |
+
This model is a [channel-agnostic masked autoencoder](https://openaccess.thecvf.com/content/CVPR2024/html/Kraus_Masked_Autoencoders_for_Microscopy_are_Scalable_Learners_of_Cellular_Biology_CVPR_2024_paper.html) trained to reconstruct microscopy images over three datasets:
|
17 |
+
1. RxRx3
|
18 |
+
2. JUMP-CP overexpression
|
19 |
+
3. JUMP-CP gene-knockouts
|
20 |
|
21 |
+
- **Developed, funded, and shared by:** Recursion
|
22 |
+
- **Model type:** Vision transformer CA-MAE
|
23 |
+
- **Image modality:** Optimized for microscopy images from the CellPainting assay
|
|
|
|
|
24 |
- **License:** [More Information Needed]
|
|
|
|
|
|
|
25 |
|
26 |
+
### Model Sources
|
27 |
|
28 |
+
- **Repository:** [https://github.com/recursionpharma/maes_microscopy](https://github.com/recursionpharma/maes_microscopy)
|
29 |
+
- **Paper:** [Masked Autoencoders for Microscopy are Scalable Learners of Cellular Biology](https://openaccess.thecvf.com/content/CVPR2024/html/Kraus_Masked_Autoencoders_for_Microscopy_are_Scalable_Learners_of_Cellular_Biology_CVPR_2024_paper.html)
|
|
|
30 |
|
31 |
## Uses
|
32 |
|