Files changed (1) hide show
  1. README.md +13 -18
README.md CHANGED
@@ -3,35 +3,30 @@ library_name: transformers
3
  tags: []
4
  ---
5
 
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
 
 
 
10
 
11
 
12
  ## Model Details
13
 
14
  ### Model Description
15
 
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
 
19
 
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
  - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
 
30
- <!-- Provide the basic links for the model. -->
31
 
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
 
36
  ## Uses
37
 
 
3
  tags: []
4
  ---
5
 
6
+ # Model Card for Phenom CA-MAE-S/16
 
 
7
 
8
+ Channel-agnostic image encoding model designed for microscopy image featurization.
9
+ The model uses a vision transformer backbone with channelwise cross-attention over patch tokens to create contextualized representations separately for each channel.
10
 
11
 
12
  ## Model Details
13
 
14
  ### Model Description
15
 
16
+ This model is a [channel-agnostic masked autoencoder](https://openaccess.thecvf.com/content/CVPR2024/html/Kraus_Masked_Autoencoders_for_Microscopy_are_Scalable_Learners_of_Cellular_Biology_CVPR_2024_paper.html) trained to reconstruct microscopy images over three datasets:
17
+ 1. RxRx3
18
+ 2. JUMP-CP overexpression
19
+ 3. JUMP-CP gene-knockouts
20
 
21
+ - **Developed, funded, and shared by:** Recursion
22
+ - **Model type:** Vision transformer CA-MAE
23
+ - **Image modality:** Optimized for microscopy images from the CellPainting assay
 
 
24
  - **License:** [More Information Needed]
 
 
 
25
 
26
+ ### Model Sources
27
 
28
+ - **Repository:** [https://github.com/recursionpharma/maes_microscopy](https://github.com/recursionpharma/maes_microscopy)
29
+ - **Paper:** [Masked Autoencoders for Microscopy are Scalable Learners of Cellular Biology](https://openaccess.thecvf.com/content/CVPR2024/html/Kraus_Masked_Autoencoders_for_Microscopy_are_Scalable_Learners_of_Cellular_Biology_CVPR_2024_paper.html)
 
30
 
31
  ## Uses
32