reddgr's picture
Update README.md
d8d5c0d verified
|
raw
history blame
6.39 kB
metadata
base_model: google/gemma-2-2b-it
library_name: peft
license: apache-2.0
language:
  - es
tags:
  - news
  - chat
  - LoRa
  - conversational AI

Model Card for Model ID

Lightweight finetuning of google/gemma-2-2b-it on a public dataset of news from Spanish digital newspapers (https://www.kaggle.com/datasets/josemamuiz/noticias-laraznpblico/).

Model Details

Model Description

This model is fine-tuned using LoRa (Low-Rank Adaptation) on the "Noticias La Razón y Público" dataset, a collection of Spanish news articles. The finetuning was done with lightweight methods to ensure efficient training while maintaining performance on the news-related language generation tasks.

Model Sources [optional]

  • Repository: [More Information Needed]
  • Paper [optional]: [More Information Needed]
  • Demo [optional]: [More Information Needed]

Uses

Direct Use

This model can be used for conversational AI tasks related to Spanish-language news. The fine-tuned LoRa model is especially suitable for use cases that require both understanding and generating text, such as chat-based interactions, answering questions about news, and discussing headlines.

Copy the code from this Gist for easy chating using Jupyter Notebook: https://gist.github.com/reddgr/20c2e3ea205d1fedfdc8be94dc5c1237

Downstream Use [optional]

[More Information Needed]

Out-of-Scope Use

[More Information Needed]

Bias, Risks, and Limitations

[More Information Needed]

Recommendations

Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.

How to Get Started with the Model

Copy the code from this Gist for easy chating using Jupyter Notebook: https://gist.github.com/reddgr/20c2e3ea205d1fedfdc8be94dc5c1237

Additionally, you can use the code below to get started with the model.

!python from transformers import AutoTokenizer, AutoModelForCausalLM from peft import PeftModel

save_directory = "./fine_tuned_model" tokenizer = AutoTokenizer.from_pretrained(save_directory) model = AutoModelForCausalLM.from_pretrained(save_directory) peft_model = PeftModel.from_pretrained(model, save_directory)

input_text = "¿Qué opinas de las noticias recientes sobre la economía?" inputs = tokenizer(input_text, return_tensors="pt") output = peft_model.generate(**inputs, max_length=50) print(tokenizer.decode(output[0], skip_special_tokens=True))

Training Details

Training Data

[More Information Needed]

Training Procedure

Preprocessing [optional]

[More Information Needed]

Training Hyperparameters

  • Training regime: [More Information Needed]

Speeds, Sizes, Times [optional]

[More Information Needed]

Evaluation

Testing Data, Factors & Metrics

Testing Data

[More Information Needed]

Factors

[More Information Needed]

Metrics

[More Information Needed]

Results

[More Information Needed]

Summary

Model Examination [optional]

[More Information Needed]

Environmental Impact

Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).

  • Hardware Type: [More Information Needed]
  • Hours used: [More Information Needed]
  • Cloud Provider: [More Information Needed]
  • Compute Region: [More Information Needed]
  • Carbon Emitted: [More Information Needed]

Technical Specifications [optional]

Model Architecture and Objective

[More Information Needed]

Compute Infrastructure

[More Information Needed]

Hardware

[More Information Needed]

Software

[More Information Needed]

Citation [optional]

BibTeX:

[More Information Needed]

APA:

[More Information Needed]

Glossary [optional]

[More Information Needed]

More Information [optional]

[More Information Needed]

Model Card Authors [optional]

[More Information Needed]

Model Card Contact

[More Information Needed]

Framework versions

  • PEFT 0.12.0