|
from typing import Any, Optional, Union
|
|
|
|
import numpy as np
|
|
import torch
|
|
import torchcrepe
|
|
|
|
from .f0 import F0Predictor
|
|
|
|
|
|
class CRePE(F0Predictor):
|
|
def __init__(
|
|
self,
|
|
hop_length=512,
|
|
f0_min=50,
|
|
f0_max=1100,
|
|
sampling_rate=44100,
|
|
device="cpu",
|
|
):
|
|
if "privateuseone" in str(device):
|
|
device = "cpu"
|
|
super().__init__(
|
|
hop_length,
|
|
f0_min,
|
|
f0_max,
|
|
sampling_rate,
|
|
device,
|
|
)
|
|
|
|
def compute_f0(
|
|
self,
|
|
wav: np.ndarray,
|
|
p_len: Optional[int] = None,
|
|
filter_radius: Optional[Union[int, float]] = None,
|
|
):
|
|
if p_len is None:
|
|
p_len = wav.shape[0] // self.hop_length
|
|
if not torch.is_tensor(wav):
|
|
wav = torch.from_numpy(wav)
|
|
|
|
batch_size = 512
|
|
|
|
f0, pd = torchcrepe.predict(
|
|
wav.float().to(self.device).unsqueeze(dim=0),
|
|
self.sampling_rate,
|
|
self.hop_length,
|
|
self.f0_min,
|
|
self.f0_max,
|
|
batch_size=batch_size,
|
|
device=self.device,
|
|
return_periodicity=True,
|
|
)
|
|
pd = torchcrepe.filter.median(pd, 3)
|
|
f0 = torchcrepe.filter.mean(f0, 3)
|
|
f0[pd < 0.1] = 0
|
|
f0 = f0[0].cpu().numpy()
|
|
return self._interpolate_f0(self._resize_f0(f0, p_len))[0]
|
|
|