|
from io import BytesIO
|
|
import os
|
|
from typing import Any, Optional, Union
|
|
|
|
import numpy as np
|
|
import torch
|
|
import torch.nn.functional as F
|
|
|
|
from rvc.jit import load_inputs, get_jit_model, export_jit_model, save_pickle
|
|
|
|
from .mel import MelSpectrogram
|
|
from .f0 import F0Predictor
|
|
from .models import get_rmvpe
|
|
|
|
|
|
def rmvpe_jit_export(
|
|
model_path: str,
|
|
mode: str = "script",
|
|
inputs_path: str = None,
|
|
save_path: str = None,
|
|
device=torch.device("cpu"),
|
|
is_half=False,
|
|
):
|
|
if not save_path:
|
|
save_path = model_path.rstrip(".pth")
|
|
save_path += ".half.jit" if is_half else ".jit"
|
|
if "cuda" in str(device) and ":" not in str(device):
|
|
device = torch.device("cuda:0")
|
|
|
|
model = get_rmvpe(model_path, device, is_half)
|
|
inputs = None
|
|
if mode == "trace":
|
|
inputs = load_inputs(inputs_path, device, is_half)
|
|
ckpt = export_jit_model(model, mode, inputs, device, is_half)
|
|
ckpt["device"] = str(device)
|
|
save_pickle(ckpt, save_path)
|
|
return ckpt
|
|
|
|
|
|
class RMVPE(F0Predictor):
|
|
def __init__(
|
|
self,
|
|
model_path: str,
|
|
is_half: bool,
|
|
device: str,
|
|
use_jit=False,
|
|
):
|
|
hop_length = 160
|
|
f0_min = 30
|
|
f0_max = 8000
|
|
sampling_rate = 16000
|
|
|
|
super().__init__(
|
|
hop_length,
|
|
f0_min,
|
|
f0_max,
|
|
sampling_rate,
|
|
device,
|
|
)
|
|
|
|
self.is_half = is_half
|
|
cents_mapping = 20 * np.arange(360) + 1997.3794084376191
|
|
self.cents_mapping = np.pad(cents_mapping, (4, 4))
|
|
|
|
self.mel_extractor = MelSpectrogram(
|
|
is_half=is_half,
|
|
n_mel_channels=128,
|
|
sampling_rate=sampling_rate,
|
|
win_length=1024,
|
|
hop_length=hop_length,
|
|
mel_fmin=f0_min,
|
|
mel_fmax=f0_max,
|
|
device=self.device,
|
|
).to(self.device)
|
|
|
|
if "privateuseone" in str(self.device):
|
|
import onnxruntime as ort
|
|
|
|
self.model = ort.InferenceSession(
|
|
"%s/rmvpe.onnx" % os.environ["rmvpe_root"],
|
|
providers=["DmlExecutionProvider"],
|
|
)
|
|
else:
|
|
|
|
def rmvpe_jit_model():
|
|
ckpt = get_jit_model(model_path, is_half, self.device, rmvpe_jit_export)
|
|
model = torch.jit.load(BytesIO(ckpt["model"]), map_location=self.device)
|
|
model = model.to(self.device)
|
|
return model
|
|
|
|
if use_jit and not (is_half and "cpu" in str(self.device)):
|
|
self.model = rmvpe_jit_model()
|
|
else:
|
|
self.model = get_rmvpe(model_path, self.device, is_half)
|
|
|
|
def compute_f0(
|
|
self,
|
|
wav: np.ndarray,
|
|
p_len: Optional[int] = None,
|
|
filter_radius: Optional[Union[int, float]] = None,
|
|
):
|
|
if p_len is None:
|
|
p_len = wav.shape[0] // self.hop_length
|
|
if not torch.is_tensor(wav):
|
|
wav = torch.from_numpy(wav)
|
|
mel = self.mel_extractor(wav.float().to(self.device).unsqueeze(0), center=True)
|
|
hidden = self._mel2hidden(mel)
|
|
if "privateuseone" not in str(self.device):
|
|
hidden = hidden.squeeze(0).cpu().numpy()
|
|
else:
|
|
hidden = hidden[0]
|
|
if self.is_half == True:
|
|
hidden = hidden.astype("float32")
|
|
|
|
f0 = self._decode(hidden, thred=filter_radius)
|
|
|
|
return self._interpolate_f0(self._resize_f0(f0, p_len))[0]
|
|
|
|
def _to_local_average_cents(self, salience, threshold=0.05):
|
|
center = np.argmax(salience, axis=1)
|
|
salience = np.pad(salience, ((0, 0), (4, 4)))
|
|
center += 4
|
|
todo_salience = []
|
|
todo_cents_mapping = []
|
|
starts = center - 4
|
|
ends = center + 5
|
|
for idx in range(salience.shape[0]):
|
|
todo_salience.append(salience[:, starts[idx] : ends[idx]][idx])
|
|
todo_cents_mapping.append(self.cents_mapping[starts[idx] : ends[idx]])
|
|
todo_salience = np.array(todo_salience)
|
|
todo_cents_mapping = np.array(todo_cents_mapping)
|
|
product_sum = np.sum(todo_salience * todo_cents_mapping, 1)
|
|
weight_sum = np.sum(todo_salience, 1)
|
|
devided = product_sum / weight_sum
|
|
maxx = np.max(salience, axis=1)
|
|
devided[maxx <= threshold] = 0
|
|
return devided
|
|
|
|
def _mel2hidden(self, mel):
|
|
with torch.no_grad():
|
|
n_frames = mel.shape[-1]
|
|
n_pad = 32 * ((n_frames - 1) // 32 + 1) - n_frames
|
|
if n_pad > 0:
|
|
mel = F.pad(mel, (0, n_pad), mode="constant")
|
|
if "privateuseone" in str(self.device):
|
|
onnx_input_name = self.model.get_inputs()[0].name
|
|
onnx_outputs_names = self.model.get_outputs()[0].name
|
|
hidden = self.model.run(
|
|
[onnx_outputs_names],
|
|
input_feed={onnx_input_name: mel.cpu().numpy()},
|
|
)[0]
|
|
else:
|
|
mel = mel.half() if self.is_half else mel.float()
|
|
hidden = self.model(mel)
|
|
return hidden[:, :n_frames]
|
|
|
|
def _decode(self, hidden, thred=0.03):
|
|
cents_pred = self._to_local_average_cents(hidden, threshold=thred)
|
|
f0 = 10 * (2 ** (cents_pred / 1200))
|
|
f0[f0 == 10] = 0
|
|
|
|
return f0
|
|
|