easyGUI / rvc /jit /jit.py
Blane187's picture
Upload 39 files
c3b58fa verified
raw
history blame
2.15 kB
import pickle
from io import BytesIO
from collections import OrderedDict
import os
import torch
def load_pickle(path: str):
with open(path, "rb") as f:
return pickle.load(f)
def save_pickle(ckpt: dict, save_path: str):
with open(save_path, "wb") as f:
pickle.dump(ckpt, f)
def load_inputs(path: torch.serialization.FILE_LIKE, device: str, is_half=False):
parm = torch.load(path, map_location=torch.device("cpu"))
for key in parm.keys():
parm[key] = parm[key].to(device)
if is_half and parm[key].dtype == torch.float32:
parm[key] = parm[key].half()
elif not is_half and parm[key].dtype == torch.float16:
parm[key] = parm[key].float()
return parm
def export_jit_model(
model: torch.nn.Module,
mode: str = "trace",
inputs: dict = None,
device=torch.device("cpu"),
is_half: bool = False,
) -> dict:
model = model.half() if is_half else model.float()
model.eval()
if mode == "trace":
assert inputs is not None
model_jit = torch.jit.trace(model, example_kwarg_inputs=inputs)
elif mode == "script":
model_jit = torch.jit.script(model)
model_jit.to(device)
model_jit = model_jit.half() if is_half else model_jit.float()
buffer = BytesIO()
# model_jit=model_jit.cpu()
torch.jit.save(model_jit, buffer)
del model_jit
cpt = OrderedDict()
cpt["model"] = buffer.getvalue()
cpt["is_half"] = is_half
return cpt
def get_jit_model(model_path: str, is_half: bool, device: str, exporter):
jit_model_path = model_path.rstrip(".pth")
jit_model_path += ".half.jit" if is_half else ".jit"
ckpt = None
if os.path.exists(jit_model_path):
ckpt = load_pickle(jit_model_path)
model_device = ckpt["device"]
if model_device != str(device):
del ckpt
ckpt = None
if ckpt is None:
ckpt = exporter(
model_path=model_path,
mode="script",
inputs_path=None,
save_path=jit_model_path,
device=device,
is_half=is_half,
)
return ckpt