reem442/Bert
This model is a fine-tuned version of google-bert/bert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:
- Train Loss: 0.0990
- Train Accuracy: 0.947
- Validation Loss: 0.1458
- Validation Accuracy: 0.9470
- Validation Precision: 0.9490
- Validation Recall: 0.947
- Validation F1: 0.9466
- Epoch: 2
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 5000, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
- training_precision: float32
Training results
Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Validation Precision | Validation Recall | Validation F1 | Epoch |
---|---|---|---|---|---|---|---|
0.1750 | 0.943 | 0.1579 | 0.9430 | 0.9447 | 0.943 | 0.9426 | 0 |
0.1194 | 0.9415 | 0.1589 | 0.9415 | 0.9434 | 0.9415 | 0.9409 | 1 |
0.0990 | 0.947 | 0.1458 | 0.9470 | 0.9490 | 0.947 | 0.9466 | 2 |
Framework versions
- Transformers 4.38.2
- TensorFlow 2.15.0
- Datasets 2.18.0
- Tokenizers 0.15.2
- Downloads last month
- 6
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for reem442/Bert
Base model
google-bert/bert-base-uncased