Edit model card

layoutlmv2-er-ner

This model is a fine-tuned version of renjithks/layoutlmv2-cord-ner on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1217
  • Precision: 0.7810
  • Recall: 0.8085
  • F1: 0.7945
  • Accuracy: 0.9747

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 41 0.5441 0.0 0.0 0.0 0.8851
No log 2.0 82 0.4660 0.1019 0.0732 0.0852 0.8690
No log 3.0 123 0.2506 0.4404 0.4828 0.4606 0.9240
No log 4.0 164 0.1725 0.6120 0.6076 0.6098 0.9529
No log 5.0 205 0.1387 0.7204 0.7245 0.7225 0.9671
No log 6.0 246 0.1237 0.7742 0.7747 0.7745 0.9722
No log 7.0 287 0.1231 0.7619 0.7554 0.7586 0.9697
No log 8.0 328 0.1199 0.7994 0.7719 0.7854 0.9738
No log 9.0 369 0.1197 0.7937 0.8113 0.8024 0.9741
No log 10.0 410 0.1284 0.7581 0.7597 0.7589 0.9690
No log 11.0 451 0.1172 0.7792 0.7848 0.7820 0.9738
No log 12.0 492 0.1192 0.7913 0.7970 0.7941 0.9743
0.1858 13.0 533 0.1175 0.7960 0.8006 0.7983 0.9753
0.1858 14.0 574 0.1184 0.7724 0.8034 0.7876 0.9740
0.1858 15.0 615 0.1171 0.7882 0.8142 0.8010 0.9756
0.1858 16.0 656 0.1195 0.7829 0.8070 0.7948 0.9745
0.1858 17.0 697 0.1209 0.7810 0.8006 0.7906 0.9743
0.1858 18.0 738 0.1241 0.7806 0.7963 0.7884 0.9740
0.1858 19.0 779 0.1222 0.7755 0.8027 0.7889 0.9742
0.1858 20.0 820 0.1217 0.7810 0.8085 0.7945 0.9747

Framework versions

  • Transformers 4.16.2
  • Pytorch 1.9.0+cu111
  • Datasets 1.18.4
  • Tokenizers 0.11.6
Downloads last month
9
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.