metadata
license: cc-by-4.0
metrics:
- bleu4
- meteor
- rouge-l
- bertscore
- moverscore
language: en
datasets:
- lmqg/qg_subjqa
pipeline_tag: text2text-generation
tags:
- question generation
widget:
- text: >-
generate question: <hl> Beyonce <hl> further expanded her acting career,
starring as blues singer Etta James in the 2008 musical biopic, Cadillac
Records.
example_title: Question Generation Example 1
- text: >-
generate question: Beyonce further expanded her acting career, starring as
blues singer <hl> Etta James <hl> in the 2008 musical biopic, Cadillac
Records.
example_title: Question Generation Example 2
- text: >-
generate question: Beyonce further expanded her acting career, starring as
blues singer Etta James in the 2008 musical biopic, <hl> Cadillac Records
<hl> .
example_title: Question Generation Example 3
model-index:
- name: lmqg/t5-small-subjqa-vanilla-movies
results:
- task:
name: Text2text Generation
type: text2text-generation
dataset:
name: lmqg/qg_subjqa
type: movies
args: movies
metrics:
- name: BLEU4
type: bleu4
value: 2.9345190129665035e-15
- name: ROUGE-L
type: rouge-l
value: 0.0028020148869182583
- name: METEOR
type: meteor
value: 0.002215978159858887
- name: BERTScore
type: bertscore
value: 0.04778535799546675
- name: MoverScore
type: moverscore
value: 0.49114955906337
Language Models Fine-tuning on Question Generation: lmqg/t5-small-subjqa-vanilla-movies
This model is fine-tuned version of t5-small for question generation task on the lmqg/qg_subjqa (dataset_name: movies).
Overview
- Language model: t5-small
- Language: en
- Training data: lmqg/qg_subjqa (movies)
- Online Demo: https://autoqg.net/
- Repository: https://github.com/asahi417/lm-question-generation
- Paper: TBA
Usage
from transformers import pipeline
model_path = 'lmqg/t5-small-subjqa-vanilla-movies'
pipe = pipeline("text2text-generation", model_path)
# Question Generation
input_text = 'generate question: <hl> Beyonce <hl> further expanded her acting career, starring as blues singer Etta James in the 2008 musical biopic, Cadillac Records.'
question = pipe(input_text)
Evaluation Metrics
Metrics
Dataset | Type | BLEU4 | ROUGE-L | METEOR | BERTScore | MoverScore | Link |
---|---|---|---|---|---|---|---|
lmqg/qg_subjqa | movies | 2.9345190129665035e-15 | 0.0028020148869182583 | 0.002215978159858887 | 0.04778535799546675 | 0.49114955906337 | link |
Training hyperparameters
The following hyperparameters were used during fine-tuning:
- dataset_path: lmqg/qg_subjqa
- dataset_name: movies
- input_types: ['paragraph_answer']
- output_types: ['question']
- prefix_types: ['qg']
- model: t5-small
- max_length: 512
- max_length_output: 32
- epoch: 1
- batch: 32
- lr: 0.0001
- fp16: False
- random_seed: 1
- gradient_accumulation_steps: 2
- label_smoothing: 0.15
The full configuration can be found at fine-tuning config file.
Citation
TBA