Alpaca Lora adapter weight fine-tuned on following instruction dataset.

https://huggingface.co/datasets/rewoo/planner_instruction_tuning_2k/blob/main/README.md

Training script: borrowed from the official Alpaca-LoRA implementation

We use following parameter.

python finetune.py \
    --base_model 'decapoda-research/llama-7b-hf' \
    --data_path 'rewoo/planner_instruction_tuning_2k' \
    --output_dir './lora-alpaca-planner' \
    --batch_size 128 \
    --micro_batch_size 8 \
    --num_epochs 10 \
    --learning_rate 1e-4 \
    --cutoff_len 1024 \
    --val_set_size 200 \
    --lora_r 8 \
    --lora_alpha 16 \
    --lora_dropout 0.05 \
    --lora_target_modules '[q_proj,v_proj]' \
    --train_on_inputs \
    --group_by_length \
    --resume_from_checkpoint 'tloen/alpaca-lora-7b'
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no library tag.

Spaces using rewoo/planner_7B 2