Edit model card

mi-super-modelo

This model is a fine-tuned version of dccuchile/albert-base-spanish on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.5146
  • Accuracy: 0.38

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.7601 0.0455 2 1.7148 0.3333
1.7063 0.0909 4 1.6888 0.3
1.5512 0.1364 6 1.6585 0.2933
1.5312 0.1818 8 1.6514 0.3
1.5006 0.2273 10 1.6581 0.3
1.6519 0.2727 12 1.6511 0.3067
1.6397 0.3182 14 1.6347 0.3
1.5275 0.3636 16 1.6183 0.3067
1.8253 0.4091 18 1.5949 0.3
1.7725 0.4545 20 1.5708 0.3
1.5334 0.5 22 1.5591 0.3067
1.3062 0.5455 24 1.5535 0.3133
1.4629 0.5909 26 1.5459 0.32
1.5431 0.6364 28 1.5408 0.3333
1.62 0.6818 30 1.5355 0.36
1.4165 0.7273 32 1.5299 0.36
1.6135 0.7727 34 1.5244 0.3733
1.5181 0.8182 36 1.5220 0.3733
1.3877 0.8636 38 1.5196 0.3733
1.6638 0.9091 40 1.5174 0.3733
1.4348 0.9545 42 1.5154 0.38
1.4226 1.0 44 1.5146 0.38

Framework versions

  • Transformers 4.45.2
  • Pytorch 2.5.0
  • Datasets 3.1.0
  • Tokenizers 0.20.1
Downloads last month
4
Safetensors
Model size
11.8M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for rez-dev/mi-super-modelo

Finetuned
(5)
this model