|
--- |
|
license: apache-2.0 |
|
base_model: Helsinki-NLP/opus-mt-tc-big-en-pt |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- kde4 |
|
model-index: |
|
- name: opus-en-to-pt-translate |
|
results: [] |
|
language: |
|
- pt |
|
- en |
|
pipeline_tag: translation |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
## Model description |
|
This model is a fine tuning for translations from English to Portuguese. |
|
|
|
|
|
## How to Use |
|
|
|
```python |
|
|
|
prompt = f""" |
|
Trump received a Bachelor of Science in economics from the University of Pennsylvania in 1968, and his father named him president of his real estate business in 1971. |
|
Trump renamed it the Trump Organization and reoriented the company toward building and renovating skyscrapers, hotels, casinos, and golf courses. |
|
After a series of business failures in the late twentieth century, he successfully launched side ventures that required little capital, mostly by licensing the Trump name. |
|
From 2004 to 2015, he co-produced and hosted the reality television series The Apprentice. |
|
""" |
|
|
|
from transformers import pipeline |
|
pipe = pipeline("translation", model="rhaymison/opus-en-to-pt-translator") |
|
print(pipe()) |
|
|
|
#Trump recebeu um título de bacharel em economia pela Universidade da Pensilvânia em 1968, e o seu pai deu- lhe o nome de presidente do seu negócio imobiliário em 1971. |
|
#Trump mudou o nome para Organização Trump e voltou a orientar a companhia para a construção e reforma de arranha- céus, hotéis, casinos e campos de golfe. |
|
#Depois de uma série de falhas de negócio no fim do século XX, ele lançou com sucesso projectos paralelos que necessitaram de pouca capital, principalmente através do |
|
#licenciamento do nome Trump. De 2004 a 2015, ele produziu em conjunto e alojou a série de reality série The Apprentice. |
|
``` |
|
|
|
```python |
|
|
|
from transformers import MarianMTModel, MarianTokenizer |
|
|
|
texts = [ |
|
">>por<< Trump received a Bachelor of Science in economics from the University of Pennsylvania in 1968, and his father named him president of his real estate business in 1971.", |
|
">>por<< Trump renamed it the Trump Organization and reoriented the company toward building and renovating skyscrapers, hotels, casinos, and golf courses." |
|
] |
|
|
|
model = "rhaymison/opus-en-to-pt-translator" |
|
tokenizer = MarianTokenizer.from_pretrained(model) |
|
model = MarianMTModel.from_pretrained(model) |
|
translated = model.generate(**tokenizer(texts, return_tensors="pt", padding=True)) |
|
|
|
for t in translated: |
|
print( tokenizer.decode(t, skip_special_tokens=True) ) |
|
|
|
# output: |
|
# Trump recebeu um título de bacharel em economia pela Universidade da Pensilvânia em 1968, e o seu pai deu- lhe o nome de presidente do seu negócio imobiliário em 1971.. |
|
# Trump mudou o nome para Organização Trump e voltou a orientar a companhia para a construção e reforma de arranha- céus, hotéis, casinos e campos de golfe. |
|
|
|
|
|
``` |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 3 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:-----:|:-----:|:---------------:| |
|
| 0.4982 | 0.08 | 500 | 0.6398 | |
|
| 0.5475 | 0.15 | 1000 | 0.6370 | |
|
| 0.5397 | 0.23 | 1500 | 0.6333 | |
|
| 0.5267 | 0.31 | 2000 | 0.6272 | |
|
| 0.5212 | 0.39 | 2500 | 0.6240 | |
|
| 0.522 | 0.46 | 3000 | 0.6179 | |
|
| 0.5213 | 0.54 | 3500 | 0.6124 | |
|
| 0.5155 | 0.62 | 4000 | 0.6114 | |
|
| 0.5143 | 0.7 | 4500 | 0.6053 | |
|
| 0.5037 | 0.77 | 5000 | 0.6058 | |
|
| 0.5093 | 0.85 | 5500 | 0.6002 | |
|
| 0.5253 | 0.93 | 6000 | 0.5945 | |
|
| 0.5138 | 1.01 | 6500 | 0.5892 | |
|
| 0.4864 | 1.08 | 7000 | 0.5906 | |
|
| 0.491 | 1.16 | 7500 | 0.5889 | |
|
| 0.4993 | 1.24 | 8000 | 0.5849 | |
|
| 0.4749 | 1.32 | 8500 | 0.5849 | |
|
| 0.4911 | 1.39 | 9000 | 0.5812 | |
|
| 0.487 | 1.47 | 9500 | 0.5796 | |
|
| 0.4846 | 1.55 | 10000 | 0.5758 | |
|
| 0.4863 | 1.63 | 10500 | 0.5739 | |
|
| 0.4792 | 1.7 | 11000 | 0.5725 | |
|
| 0.4816 | 1.78 | 11500 | 0.5704 | |
|
| 0.4811 | 1.86 | 12000 | 0.5684 | |
|
| 0.4773 | 1.94 | 12500 | 0.5676 | |
|
| 0.4657 | 2.01 | 13000 | 0.5691 | |
|
| 0.4246 | 2.09 | 13500 | 0.5683 | |
|
| 0.4285 | 2.17 | 14000 | 0.5693 | |
|
| 0.4241 | 2.25 | 14500 | 0.5676 | |
|
| 0.422 | 2.32 | 15000 | 0.5669 | |
|
| 0.4199 | 2.4 | 15500 | 0.5656 | |
|
| 0.4273 | 2.48 | 16000 | 0.5650 | |
|
| 0.4161 | 2.56 | 16500 | 0.5651 | |
|
| 0.4243 | 2.63 | 17000 | 0.5635 | |
|
| 0.4202 | 2.71 | 17500 | 0.5628 | |
|
| 0.4152 | 2.79 | 18000 | 0.5627 | |
|
| 0.4179 | 2.87 | 18500 | 0.5619 | |
|
| 0.4241 | 2.94 | 19000 | 0.5618 | |
|
|
|
# opus-en-to-pt-translate |
|
|
|
This model is a fine-tuned version of [Helsinki-NLP/opus-mt-tc-big-en-pt](https://huggingface.co/Helsinki-NLP/opus-mt-tc-big-en-pt) on the kde4 dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.5618 |
|
|
|
### Framework versions |
|
|
|
- Transformers 4.38.1 |
|
- Pytorch 2.1.0+cu121 |
|
- Datasets 2.18.0 |
|
- Tokenizers 0.15.2 |