|
--- |
|
license: apache-2.0 |
|
language: |
|
- en |
|
library_name: transformers |
|
pipeline_tag: image-text-to-text |
|
tags: |
|
- multimodal |
|
- aria |
|
--- |
|
<!-- <p align="center"> |
|
<br>Aria</br> |
|
</p> --> |
|
|
|
|
|
# Aria-Base-64K Model Card |
|
|
|
<p align="center"> |
|
🔗 <a href="https://rhymes.ai/" target="_blank"> Try Aria!</a> · 📖 <a href="https://www.rhymes.ai/blog-details/aria-first-open-multimodal-native-moe-model" target="_blank">Blog</a> · 📌 <a href="https://arxiv.org/pdf/2410.05993" target="_blank">Paper</a> |
|
· ⭐ <a href="https://github.com/rhymes-ai/Aria" target="_blank">GitHub</a> · 🟣 <a href="https://discord.com/invite/u8HxU23myj" target="_blank"> Discord </a> |
|
</p> |
|
|
|
|
|
This checkpoint is one of base models of [Aria](https://huggingface.co/rhymes-ai/Aria), designed for research purposes as well as continue training. Specifically, Aria-Base-64K corresponds to the model checkpoint after the long-context pre-training stage (boxed in purple). |
|
|
|
<img src="./aria-stages.png" alt="Aria Training Stages" style="width: 75%;"> |
|
|
|
Aria-Base-64K is fine-tuned from [Aria-Base-8K](https://huggingface.co/teowu/Aria-Base-8K). |
|
|
|
<!-- |
|
- Aria is the **first open multimodal native MoE** model, capable of seamlessly handling various input modalities within a MoE architecture. |
|
- Aria performs **on par with GPT-4o mini and Gemini 1.5 Flash** across a range of multimodal tasks while maintaining strong performance on **text**-only tasks. |
|
- Compared to similar or even larger models, Aria boasts **faster speeds** and **lower costs**. This high efficiency stems from its ability to activate only 3.9B parameters during inference – the **fewest** among models with comparable performance. |
|
--> |
|
|
|
## Aria-Base-8K |
|
|
|
- **Base Model After Long-Context Pre-training**: This model corresponds to the model checkpoint after the long-context pre-training stage, with 33B tokens (21B multimodal, 12B language, 69% in long-form) trained in this stage. This stage lasts 1,000 iterations, with all sequences packed to 65536 with Megatron-LM, with global batch size 512. During this training stage, the learning rate keeps constant at `3.5e-5`. |
|
- **Appropriate for Video and Long-document Fine-tuning**: This model is recommended for long-form continue pre-training or fine-tuning, e.g. on video QA datasets or long-document QA datasets. While resource is limited, it is also possible to post-train this model with short instruction tuning datasets and transfer to long-form QA scenarios. |
|
- **Understanding on Hundreds of Images**: This model is capable of understanding up to 250 high-resolution images or up to 500 mid-resolution images. |
|
- **Strong Base Performance on Language and Multimodal Scenarios**: This model retains strong base performance as [Aria-Base-8K](https://huggingface.co/teowu/Aria-Base-8K). |
|
- ***Limited Chat Template Availability***: This model is trained with a very low percentage of data (around 3%) re-formatted with the chat template. Hence, it might not be optimal to be directly tested with various benchmarks. |
|
|
|
<!-- # Model Info |
|
|
|
| Model | Download | Parameter | Context Length | |
|
| :---- | :------- | :------------ | :------ | |
|
| Aria | < HF link - TBD> | • Activation: 3.9B (3.5B MoE + 0.4B Visual Encoder) <br> • Total: 25.3B | 64K | --> |
|
|
|
## Benchmark |
|
|
|
N/A. |
|
|
|
## Quick Start |
|
### Installation |
|
``` |
|
pip install transformers==4.45.0 accelerate==0.34.1 sentencepiece==0.2.0 torchvision requests torch Pillow |
|
pip install flash-attn --no-build-isolation |
|
|
|
# For better inference performance, you can install grouped-gemm, which may take 3-5 minutes to install |
|
pip install grouped_gemm==0.1.6 |
|
``` |
|
|
|
### Inference |
|
|
|
You can use the same method as the final Aria model to load this checkpoint. However, as the base model, it might not be able to yield optimal chat performance. |
|
|
|
```python |
|
import requests |
|
import torch |
|
from PIL import Image |
|
from transformers import AutoModelForCausalLM, AutoProcessor |
|
|
|
model_id_or_path = "teowu/Aria-Base-64K" |
|
|
|
model = AutoModelForCausalLM.from_pretrained(model_id_or_path, device_map="auto", torch_dtype=torch.bfloat16, trust_remote_code=True) |
|
|
|
processor = AutoProcessor.from_pretrained(model_id_or_path, trust_remote_code=True) |
|
|
|
image_path = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/cat.png" |
|
|
|
image = Image.open(requests.get(image_path, stream=True).raw) |
|
|
|
messages = [ |
|
{ |
|
"role": "user", |
|
"content": [ |
|
{"text": None, "type": "image"}, |
|
{"text": "what is the image?", "type": "text"}, |
|
], |
|
} |
|
] |
|
|
|
text = processor.apply_chat_template(messages, add_generation_prompt=True) |
|
inputs = processor(text=text, images=image, return_tensors="pt") |
|
inputs["pixel_values"] = inputs["pixel_values"].to(model.dtype) |
|
inputs = {k: v.to(model.device) for k, v in inputs.items()} |
|
|
|
with torch.inference_mode(), torch.cuda.amp.autocast(dtype=torch.bfloat16): |
|
output = model.generate( |
|
**inputs, |
|
max_new_tokens=500, |
|
stop_strings=["<|im_end|>"], |
|
tokenizer=processor.tokenizer, |
|
do_sample=True, |
|
temperature=0.9, |
|
) |
|
output_ids = output[0][inputs["input_ids"].shape[1]:] |
|
result = processor.decode(output_ids, skip_special_tokens=True) |
|
|
|
print(result) |
|
``` |
|
|
|
### Advanced Inference and Fine-tuning |
|
|
|
We provide a [codebase](https://github.com/rhymes-ai/Aria) for more advanced usage of Aria, |
|
including vllm inference, cookbooks, and fine-tuning on custom datasets. |
|
|
|
As it shares the same structure with the final model, |
|
you may just replace the `rhymes-ai/Aria` to this model path for any advanced inference and fine-tuning. |
|
|
|
|
|
## Citation |
|
If you find our work helpful, please consider citing. |
|
``` |
|
@article{aria, |
|
title={Aria: An Open Multimodal Native Mixture-of-Experts Model}, |
|
author={Dongxu Li and Yudong Liu and Haoning Wu and Yue Wang and Zhiqi Shen and Bowen Qu and Xinyao Niu and Guoyin Wang and Bei Chen and Junnan Li}, |
|
year={2024}, |
|
journal={arXiv preprint arXiv:2410.05993}, |
|
} |
|
``` |