Aria / README.md
aria-dev's picture
update README
8bbd2bd
|
raw
history blame
5.94 kB
metadata
license: apache-2.0
language:
  - en
library_name: transformers
tags:
  - multimodal
  - aria

Aria Model Card

Key features

  • SoTA Multimodal Native Performance: Aria achieves strong performance on a wide range of multimodal, language, and coding tasks. It is superior in video and document understanding.
  • Lightweight and Fast: Aria is a mixture-of-expert model with 3.9B activated parameters per token. It efficently encodes visual input of variable sizes and aspect ratios.
  • Long Multimodal Context Window: Aria supports multimodal input of up to 64K tokens. It can caption a 256-frame video in 10 seconds.

Benchmark

Category Benchmark Aria Pixtral 12B Llama3.2 11B GPT-4o mini Gemini-1.5 Flash
Knowledge (Multimodal) MMMU 54.9 52.5 50.7 59.4 56.1
Math (Multimodal) MathVista 66.1 58.0 51.5 - 63.9
Document DocQA 92.6 90.7 84.4 - 89.9
Chart ChartQA 86.4 81.8 83.4 - 85.4
Scene Text TextVQA 81.1 - - - 78.7
General Visual QA MMBench-1.1 80.3 - - 76.0 -
Video Understanding LongVideoBench 66.6 47.4 45.7 58.8 62.4
Knowledge (Language) MMLU (5-shot) 73.3 69.2 69.4 - 78.9
Math (Language) MATH 50.8 48.1 51.9 70.2 -
Reasoning (Language) ARC Challenge 91.0 - 83.4 96.4 -
Coding HumanEval 73.2 72.0 72.6 87.2 74.3

Quick Start

Installation

pip install transformers==4.45.0 accelerate==0.34.1 sentencepiece==0.2.0 torchvision requests torch Pillow
pip install flash-attn --no-build-isolation

# For better performance, you can install grouped-gemm, which may take 3-5 minutes to install
pip install grouped_gemm==0.1.6

Inference

Aria has 25.3B total parameters, it can be loaded in one A100 (80GB) GPU with bfloat16 precision.

Here is a code snippet to show you how to use Aria.

import requests
import torch
from PIL import Image
from transformers import AutoModelForCausalLM, AutoProcessor

model_id_or_path = "rhymes-ai/Aria"

model = AutoModelForCausalLM.from_pretrained(model_id_or_path, device_map="auto", torch_dtype=torch.bfloat16, trust_remote_code=True)

processor = AutoProcessor.from_pretrained(model_id_or_path, trust_remote_code=True)

image_path = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/cat.png"

image = Image.open(requests.get(image_path, stream=True).raw)

messages = [
    {
        "role": "user",
        "content": [
            {"text": None, "type": "image"},
            {"text": "what is the image?", "type": "text"},
        ],
    }
]

text = processor.apply_chat_template(messages, add_generation_prompt=True)
inputs = processor(text=text, images=image, return_tensors="pt")
inputs["pixel_values"] = inputs["pixel_values"].to(model.dtype)
inputs = {k: v.to(model.device) for k, v in inputs.items()}

with torch.inference_mode(), torch.cuda.amp.autocast(dtype=torch.bfloat16):
    output = model.generate(
        **inputs,
        max_new_tokens=500,
        stop_strings=["<|im_end|>"],
        tokenizer=processor.tokenizer,
        do_sample=True,
        temperature=0.9,
    )
    output_ids = output[0][inputs["input_ids"].shape[1]:]
    result = processor.decode(output_ids, skip_special_tokens=True)

print(result)

Advanced Inference and Fine-tuning

We provide a codebase for more advanced usage of Aria, including vllm inference, cookbooks, and fine-tuning on custom datasets.

Citation

If you find our work helpful, please consider citing.

@article{aria,
  title={},
  author={},
  year={2024},
  journal={}
}