Aria / README.md
JunnanLi's picture
Update README.md
ba771dc verified
|
raw
history blame
5.75 kB
---
license: apache-2.0
language:
- en
library_name: transformers
tags:
- multimodal
- aria
---
<!-- <p align="center">
<br>Aria</br>
</p>
<p align="center">
πŸ”— <a href="https://huggingface.co" target="_blank"> Try Aria!</a> Β· πŸ“– <a href="https://huggingface.co" target="_blank">Blog</a> Β· πŸ“Œ <a href="https://huggingface.co" target="_blank">Paper</a> Β·
Β·πŸ–€ <a href="https://huggingface.co" target="_blank">GitHub</a> πŸ’œ <a href="https://huggingface.co" target="_blank">Discord</a>
Β· πŸ’™ <a href="https://huggingface.co" target="_blank">Twitter</a>
</p>
-->
# Aria Model Card
<!--
- Aria is the **first open multimodal native MoE** model, capable of seamlessly handling various input modalities within a MoE architecture.
- Aria performs **on par with GPT-4o mini and Gemini 1.5 Flash** across a range of multimodal tasks while maintaining strong performance on **text**-only tasks.
- Compared to similar or even larger models, Aria boasts **faster speeds** and **lower costs**. This high efficiency stems from its ability to activate only 3.9B parameters during inference – the **fewest** among models with comparable performance.
-->
## Key features
- **SoTA Multimodal Native Performance**: Aria achieves strong performance on a wide range of multimodal, language, and coding tasks. It is superior in video and document understanding.
- **Lightweight and Fast**: Aria is a mixture-of-expert model with 3.9B activated parameters per token. It efficently encodes visual input of variable sizes and aspect ratios.
- **Long Multimodal Context Window**: Aria supports multimodal input of up to 64K tokens. It can caption a 256-frame video in 10 seconds.
<!-- # Model Info
| Model | Download | Parameter | Context Length |
| :---- | :------- | :------------ | :------ |
| Aria | < HF link - TBD> | β€’ Activation: 3.9B (3.5B MoE + 0.4B Visual Encoder) <br> β€’ Total: 25.3B | 64K | -->
## Benchmark
| Category | Benchmark | Aria | Pixtral 12B | Llama3.2 11B | GPT-4o mini | Gemini-1.5 Flash |
|:-------------------------------------|:-------------------|:--------:|:-------------:|:--------------:|:-------------:|:------------------:|
| **Knowledge (Multimodal)** | MMMU | 54.9 | 52.5 | 50.7 | 59.4 | 56.1 |
| **Math (Multimodal)** | MathVista | 66.1 | 58.0 | 51.5 | - | 63.9 |
| **Document** | DocQA | 92.6 | 90.7 | 84.4 | - | 89.9 |
| **Chart** | ChartQA | 86.4 | 81.8 | 83.4 | - | 85.4 |
| **Scene Text** | TextVQA | 81.1 | - | - | - | 78.7 |
| **General Visual QA** | MMBench-1.1 | 80.3 | - | - | 76.0 | - |
| **Video Understanding** | LongVideoBench | 66.6 | 47.4 | 45.7 | 58.8 | 62.4 |
| **Knowledge (Language)** | MMLU (5-shot) | 73.3 | 69.2 | 69.4 | - | 78.9 |
| **Math (Language)** | MATH | 50.8 | 48.1 | 51.9 | 70.2 | - |
| **Reasoning (Language)** | ARC Challenge | 91.0 | - | 83.4 | 96.4 | - |
| **Coding** | HumanEval | 73.2 | 72.0 | 72.6 | 87.2 | 74.3 |
## Quick Start
### Installation
```
pip install git+github.com/rhymes-ai/Aria.git
pip install flash-attn --no-build-isolation
```
### Inference
Aria has 25.3B total parameters, it can be loaded in one A100 (80GB) GPU with bfloat16 precision.
Here is a code snippet to show you how to use Aria.
```python
import requests
import torch
from PIL import Image
from transformers import AutoModelForCausalLM, AutoProcessor
model_id_or_path = "rhymes-ai/Aria"
model = AutoModelForCausalLM.from_pretrained(model_id_or_path, device_map="auto", torch_dtype=torch.bfloat16, trust_remote_code=True)
processor = AutoProcessor.from_pretrained(model_id_or_path, trust_remote_code=True)
image_path = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/cat.png"
image = Image.open(requests.get(image_path, stream=True).raw)
messages = [
{
"role": "user",
"content": [
{"text": None, "type": "image"},
{"text": "what is the image?", "type": "text"},
],
}
]
text = processor.apply_chat_template(messages, add_generation_prompt=True)
inputs = processor(text=text, images=image, return_tensors="pt")
inputs["pixel_values"] = inputs["pixel_values"].to(model.dtype)
inputs = {k: v.to(model.device) for k, v in inputs.items()}
with torch.inference_mode(), torch.cuda.amp.autocast(dtype=torch.bfloat16):
output = model.generate(
**inputs,
max_new_tokens=500,
stop_strings=["<|im_end|>"],
tokenizer=processor.tokenizer,
do_sample=True,
temperature=0.9,
)
output_ids = output[0][inputs["input_ids"].shape[1]:]
result = processor.decode(output_ids, skip_special_tokens=True)
print(result)
```
### Advanced Inference and Fine-tuning
We provide a [codebase](https://github.com/rhymes-ai/Aria) for more advanced usage of Aria,
including vllm inference, cookbooks, and fine-tuning on custom datasets.
## Citation
If you find our work helpful, please consider citing.
```
@article{aria,
title={},
author={},
year={2024},
journal={}
}
```