ribesstefano/RuleBert-v0.4-k3
This model is a fine-tuned version of papluca/xlm-roberta-base-language-detection on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.3407
- F1: 0.4872
- Roc Auc: 0.6726
- Accuracy: 0.0
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 4
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 4000
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | F1 | Roc Auc | Accuracy |
---|---|---|---|---|---|---|
0.3575 | 0.12 | 250 | 0.3463 | 0.5176 | 0.6948 | 0.0 |
0.347 | 0.24 | 500 | 0.3424 | 0.4507 | 0.6503 | 0.0714 |
0.347 | 0.36 | 750 | 0.3390 | 0.4507 | 0.6503 | 0.0714 |
0.3398 | 0.48 | 1000 | 0.3248 | 0.4872 | 0.6726 | 0.0 |
0.3485 | 0.6 | 1250 | 0.3322 | 0.5000 | 0.6785 | 0.0 |
0.3355 | 0.71 | 1500 | 0.3407 | 0.4872 | 0.6726 | 0.0 |
Framework versions
- Transformers 4.36.2
- Pytorch 2.1.0+cu121
- Datasets 2.16.1
- Tokenizers 0.15.0
- Downloads last month
- 105
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for ribesstefano/RuleBert-v0.4-k3
Base model
FacebookAI/xlm-roberta-base